Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-19T04:12:39.630Z Has data issue: false hasContentIssue false

Why we forget our dreams: Acetylcholine and norepinephrine in wakefulness and REM sleep

Published online by Cambridge University Press:  05 January 2017

Andrea Becchetti
Affiliation:
Department of Biotechnology and Biosciences and Center for Neuroscience of Milan, University of Milano—Bicocca, 20128 Milan, Italyandrea.becchetti@unimib.ithttp://www.btbs.unimib.it
Alida Amadeo
Affiliation:
Department of Biosciences, University of Milano, 20133 Milan, Italyalida.amadeo@unimi.ithttp://www.dbs.unimi.it

Abstract

The ascending fibers releasing norepinephrine and acetylcholine are highly active during wakefulness. In contrast, during rapid-eye-movement sleep, the neocortical tone is sustained mainly by acetylcholine. By comparing the different physiological features of the norepinephrine and acetylcholine systems in the light of the GANE (glutamate amplifies noradrenergic effects) model, we suggest how to interpret some functional differences between waking and rapid-eye-movement sleep.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, S. & Rasch, B. (2014) Differential effects of non-REM and REM sleep on memory consolidation? Current Neurology and Neuroscience Reports 14:430. doi: 10.1007/s11910-013-0430-8.CrossRefGoogle ScholarPubMed
Aracri, P., Banfi, D., Pasini, M. E., Amadeo, A. & Becchetti, A. (2015) Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex. Cerebral Cortex 25:1330–47. doi: 10.1093/cercor/bht326.CrossRefGoogle Scholar
Berg, D. K. (2011) Timing is everything, even for cholinergic control. Neuron 71:68. doi: 10.1016/j.neuron.2011.06.029.CrossRefGoogle ScholarPubMed
Constantinople, C. M. & Bruno, R. M. (2011) Effects and mechanisms of wakefulness on local cortical networks. Neuron 69(6):1061–68. Available at: http://dx.doi.org/10.1016/j.neuron.2011.02.040.CrossRefGoogle ScholarPubMed
Dani, J. A. & Bertrand, D. (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology 47:699729. doi: 10.1146/annurev.pharmtox.47.120505.105214.CrossRefGoogle ScholarPubMed
Datta, S. (2010) Cellular and chemical neuroscience of mammalian sleep. Sleep Medicine 11:431–40. doi: 10.1016/j.sleep.2010.02.002.CrossRefGoogle ScholarPubMed
Ghersi, C., Bonfanti, A., Manzari, B., Feligioni, M., Raiteri, M. & Pittaluga, A. (2003) Pharmacological heterogeneity of release-regulating presynaptic AMPA/kainate receptors in the rat brain: Study with receptor antagonists. Neurochemistry International 42:283–92. doi: 10.1016/S0197-0186(02)00129-8.CrossRefGoogle ScholarPubMed
Gulledge, A. T., Bucci, D. J., Zhang, S. S., Matsui, M. & Yeh, H. H. (2009) M1 receptors mediate cholinergic modulation of excitability in neocortical pyramidal neurons. Journal of Neuroscience 29:9888–902. doi: 10.1523/JNEUROSCI.1366-09.2009.CrossRefGoogle ScholarPubMed
Jones, B. E. (2011) Neurobiology of waking and sleeping. Handbook of Clinical Neurology 98:131–49. doi: 10.1016/B978-0-444-52006-7.00009-5.CrossRefGoogle ScholarPubMed
Jones, B. E. & Hassani, O. K. (2008) The role of Hcrt/Orx and MCH neurons in sleep–wake state regulation. Sleep 36:1769–72. doi: 10.5665/sleep.3188.CrossRefGoogle Scholar
Lee, M. G., Hassani, O. K., Alonso, A. & Jones, B. E. (2005) Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. Journal of Neuroscience 25:4365–69. doi: 10.1523/JNEUROSCI.0178-05.2005.CrossRefGoogle ScholarPubMed
Marchi, M. & Grilli, M. (2010) Presynaptic nicotinic receptors modulating neurotransmitter release in the central nervous system: Functional interactions with other coexisting receptors. Progress in Neurobiology 92:105–11. doi: 10.1016/j.pneurobio.2010.06.004.CrossRefGoogle ScholarPubMed
McCormick, D. A. & Prince, D. A. (1986) Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. Journal of Physiology 375:169–94. doi: 10.1113/jphysiol.1986.sp016112.CrossRefGoogle ScholarPubMed
McGaugh, J. L. (2013) Making lasting memories: Remembering the significant. Proceedings of the National Academy of Sciences of the United States of America 110(Suppl. 2):10402–407. doi: 10.1073/pnas.1301209110.CrossRefGoogle ScholarPubMed
Monti, J. M., Torterolo, P. & Lagos, P. (2013) Melanin-concentrating hormone control of sleep–wake behavior. Sleep Medicine Reviews 17:293–98. doi: 10.1016/j.smrv.2012.10.002.CrossRefGoogle ScholarPubMed
Parikh, V., Man, K., Decker, M. W. & Sarter, M. (2008) Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex. Journal of Neuroscience 28:3769–80. doi: 10.1523/JNEUROSCI.5251-07.2008.CrossRefGoogle ScholarPubMed
Proulx, E., Suri, D., Heximer, S. P., Vaidya, V. A. & Lambe, E. K. (2014) Early stress prevents the potentiation of muscarinic excitation by calcium release in adult prefrontal cortex. Biological Psychiatry 76:315–23. doi: 10.1016/j.biopsych.2013.10.017.CrossRefGoogle ScholarPubMed
Rasch, B. & Born, J. (2013) About sleep's role in memory. Physiological Reviews 93:681766. doi: 10.1152/physrev.00032.2012.CrossRefGoogle ScholarPubMed
Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J. & Scammel, T. E. (2010) Sleep state switching. Neuron 68:1023–42. doi: 10.1016/j.neuron.2010.11.032.CrossRefGoogle ScholarPubMed
Schmidt, S. L., Chew, E. Y., Bennett, D. V., Hammad, M. A. & Frölich, F. (2013) Differential effects of cholinergic and noradrenergic neuromodulation on spontaneous cortical network dynamics. Neuropharmacology 72:259–73. doi: 10.1016/j.neuropharm.2013.04.045.CrossRefGoogle ScholarPubMed
Steriade, M. & McCarley, R. W. (2005) Brain control of wakefulness and sleep. Kluwer Academic/Plenum.Google Scholar
Takahashi, K., Kayama, Y., Lin, J. S. & Sakai, K. (2010) Locus coeruleus neuronal activity during the sleep–waking cycle in mice. Neuroscience 169:1116–26. doi: 10.1016/j.neuroscience.2010.06.009.CrossRefGoogle ScholarPubMed