Skip to main content
×
×
Home

ALMOST ALL PRIMES HAVE A MULTIPLE OF SMALL HAMMING WEIGHT

  • CHRISTIAN ELSHOLTZ (a1)
Abstract

We improve recent results of Bourgain and Shparlinski to show that, for almost all primes $p$ , there is a multiple $mp$ that can be written in binary as

$$\begin{eqnarray}mp=1+2^{m_{1}}+\cdots +2^{m_{k}},\quad 1\leq m_{1}<\cdots
with $k=6$ (corresponding to Hamming weight seven). We also prove that there are infinitely many primes $p$ with a multiplicative subgroup $A=\langle g\rangle \subset \mathbb{F}_{p}^{\ast }$ , for some $g\in \{2,3,5\}$ , of size $|A|\gg p/(\log p)^{3}$ , where the sum–product set $A\cdot A+A\cdot A$ does not cover $\mathbb{F}_{p}$ completely.

Copyright
References
Hide All
[1] Alon, N. and Bourgain, J., ‘Additive patterns in multiplicative subgroups’, Geom. Funct. Anal. 24(3) (2014), 721739.
[2] Baker, R. C. and Harman, G., ‘Shifted primes without large prime factors’, Acta Arith. 83(4) (1998), 331361.
[3] Ballot, C., ‘Density of prime divisors of linear recurrences’, Mem. Amer. Math. Soc. 115(551) (1995).
[4] Bourgain, J., ‘New bounds on exponential sums related to the Diffie–Hellman distributions’, C. R. Math. Acad. Sci. Paris 338(11) (2004), 825830.
[5] Bourgain, J., ‘Mordell’s exponential sum estimate revisited’, J. Amer. Math. Soc. 18 (2005), 477499.
[6] Bourgain, J., ‘Estimates on exponential sums related to the Diffie–Hellman distributions’, Geom. Funct. Anal. 15(1) (2005), 134.
[7] Bourgain, J., Katz, N. and Tao, T., ‘A sum–product estimate in finite fields, and applications’, Geom. Funct. Anal. 14(1) (2004), 2757.
[8] Bundschuh, P., ‘Solution of problem 618’, Elem. Math. 26 (1971), 4344.
[9] Chapman, J., Erdoğan, M., Hart, D., Iosevich, A. and Koh, D., ‘Pinned distance sets, k-simplices, Wolff’s exponent in finite fields and sum–product estimates’, Math. Z. 271(1) (2012), 6393.
[10] Cilleruelo, J. and Zumalacárregui, A., ‘An additive problem in finite fields of powers of elements of large multiplicative order’, Rev. Mat. Complut. 27(2) (2014), 501508.
[11] Cochrane, T. and Pinner, C., ‘Sum-product estimates applied to Waring’s problem mod p ’, Integers 8 (2008), A46, 18 pp.
[12] Cochrane, T., Hart, D., Pinner, C. and Spencer, C., ‘Waring’s number for large subgroups of ℤ p ’, Acta Arith. 163(4) (2014), 309325.
[13] Dietmann, R., Elsholtz, C. and Shparlinski, I., ‘On gaps between primitive roots in the Hamming metric’, Q. J. Math. 64(4) (2013), 10431055.
[14] Elsholtz, C., ‘The distribution of sequences in residue classes’, Proc. Amer. Math. Soc. 130(8) (2002), 22472250.
[15] Elsholtz, C., ‘The number 𝛤(k) in Waring’s problem’, Acta Arith. 131 (2008), 4349.
[16] Erdős, P., ‘Bemerkungen zu einer Aufgabe in den Elementen’, Arch. Math. (Basel) 27(2) (1976), 159163.
[17] Erdős, P. and Ram Murty, M., ‘On the order of a (mod p)’, in: Number Theory (Ottawa, 1996), CRM Proceedings and Lecture Notes, 19 (American Mathematical Society, Providence, RI, 1999), 8797.
[18] Ford, K., ‘The distribution of integers with a divisor in a given interval’, Ann. of Math. (2) 168 (2008), 367433.
[19] Garaev, M. Z. and Kueh, K. L., ‘Distribution of special sequences modulo a large prime’, Int. J. Math. Math. Sci. 50 (2003), 31893194.
[20] Glibichuk, A. A., ‘Additive properties of product sets in an arbitrary finite field’, Preprint, arXiv:0801.2021, 2008.
[21] Glibichuk, A. A., ‘Sums of powers of subsets of an arbitrary finite field’, Izv. Ross. Akad. Nauk Ser. Mat. 75(20) (2011), 3568 (in Russian); translation in Izv. Math. 75(2) (2011), 253–285.
[22] Glibichuk, A. A. and Rudnev, M., ‘On additive properties of product sets in an arbitrary finite field’, J. Anal. Math. 108 (2009), 159170.
[23] Harman, G., ‘On the greatest prime factor of p - 1 with effective constants’, Math. Comp. 74(252) (2005), 20352041.
[24] Hart, D., ‘A note on sumsets of subgroups in ℤ p ’, Acta Arith. 161 (2013), 387395.
[25] Hart, D. and Iosevich, A., ‘Sums and products in finite fields: an integral geometric viewpoint’, in: Contemporary Mathematics, 464 (American Mathematical Society, Providence, RI, 2008), 129135.
[26] Hasse, H., ‘Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a≠0 von gerader bzw. ungerader Ordnung mod p ist’, Math. Ann. 166 (1966), 1923.
[27] Heath-Brown, D. R., ‘Artin’s conjecture for primitive roots’, Q. J. Math. Oxford Ser. 2 37(1) (1986), 2738.
[28] Heath-Brown, D. R. and Konyagin, S., ‘New bounds for Gauss sums derived from kth powers and for Heilbronn’s exponential sum’, Q. J. Math. 51(2) (2000), 221235.
[29] Hooley, C., ‘On Artin’s conjecture’, J. reine angew. Math. 225 (1967), 209220.
[30] Indlekofer, K.-H. and Timofeev, N. M., ‘Divisors of shifted primes’, Publ. Math. Debrecen 60 (2002), 307345.
[31] Kurlberg, P. and Pomerance, C., ‘On the periods of the linear congruential and power generators’, Acta Arith. 119(2) (2005), 149169.
[32] Luca, F. and Stanica, P., ‘Prime divisors of Lucas sequences and a conjecture of Skałba’, Int. J. Number Theory 1(1) (2005), 583591.
[33] Matthews, C. R., ‘Counting points modulo p for some finitely generated subgroups of algebraic groups’, Bull. Lond. Math. Soc. 14 (1982), 149154.
[34] Moree, P., ‘On the divisors of a k + b k ’, Acta Arith. 80(3) (1997), 197212.
[35] Moree, P., ‘Artin’s primitive root conjecture—a survey’, Integers 12A A13 (2012).
[36] Odoni, R. W. K., ‘A conjecture of Krishnamurthy on decimal periods and some allied problems’, J. Number Theory 13(3) (1981), 303319.
[37] Pappalardi, F., ‘On the order of finitely generated subgroups of Q  (mod p) and divisors of p - 1’, J. Number Theory 57(2) (1996), 207222.
[38] Rudnev, M., ‘An improved estimate on sums of product sets’, arXiv:0805.2696v1, 2008.
[39] Schoen, T. and Shkredov, I. D., ‘Additive properties of multiplicative subgroups of F p ’, Q. J. Math. 63(3) (2012), 713722.
[40] Shkredov, I. D., ‘Some new inequalities in additive combinatorics’, Mosc. J. Comb. Number Theory 3(3–4) (2013), 189239.
[41] Shkredov, I. D., ‘On exponential sums over multiplicative subgroups of medium size’, Finite Fields Appl. 30 (2014), 7287.
[42] Shparlinski, I. E., ‘Prime divisors of sparse integers’, Period. Math. Hungar. 46(2) (2003), 215222.
[43] Shparlinski, I. E., ‘Exponential sums and prime divisors of sparse integers’, Period. Math. Hungar. 57(1) (2008), 9399.
[44] Skałba, M., ‘Two conjectures on primes dividing 2 a + 2 b + 1’, Elem. Math. 59(4) (2004), 171173.
[45] Stolarsky, K. B., ‘Integers whose multiples have anomalous digital frequencies’, Acta Arith. 38 (1980), 117128.
[46] Tao, T., ‘A remark on primality testing and decimal expansions’, J. Aust. Math. Soc. 91(3) (2011), 405413.
[47] Wagstaff, S. Jr., ‘Prime numbers with a fixed number of one bits or zero bits in their binary representation’, Experiment. Math. 10(2) (2001), 267274.
[48] Weil, A., ‘Numbers of solutions of equations in finite fields’, Bull. Amer. Math. Soc. 55 (1949), 497508.
[49] Wiertelak, K., ‘On the density of some sets of primes. IV’, Acta Arith. 43(2) (1984), 177190.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed