Skip to main content
×
×
Home

SEMIGROUPS OF COMPOSITION OPERATORS ON LOCAL DIRICHLET SPACES

  • GEORGIOS STYLOGIANNIS (a1)
Abstract

We study the strong continuity of semigroups of composition operators on local Dirichlet spaces.

Copyright
References
Hide All
[1] Berkson, E. and Porta, H., ‘Semigroups of analytic functions and composition operators’, Michigan Math. J. 25 (1978), 101115.
[2] Bracci, F., Contreras, M. D. and Díaz-Madrigal, S., ‘Evolution families and the Loewner equation I: the unit disc’, J. reine angew. Math. 672 (2012), 137.
[3] Contreras, M. D. and Díaz-Madrigal, S., ‘Analytic flows on the unit disk: angular derivatives and boundary fixed points’, Pacific J. Math. 222 (2005), 253286.
[4] Contreras, M. D., Díaz-Madrigal, S. and Pommerenke, Ch., ‘Fixed points and boundary behaviour of the Koenigs function’, Ann. Acad. Sci. Fenn. Math. 29 (2004), 471488.
[5] Contreras, M. D., Díaz-Madrigal, S. and Pommerenke, Ch., ‘On boundary critical points for semigroups of analytic functions’, Math. Scand. 98 (2006), 125142.
[6] Cowen, C. C. and MacCluer, B. O., Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics (CRC Press, Boca Raton, FL, 1995).
[7] Duren, P. L., Theory of H p -Spaces, Pure and Applied Mathematics, 38 (Academic Press, New York–London, 1970).
[8] Matache, V., ‘Weighted composition operators on H 2 and applications’, Complex Anal. Oper. Theory 2 (2008), 169197.
[9] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44 (Springer, New York, 1983).
[10] Richter, S., ‘A representation theorem for cyclic analytic two-isometries’, Trans. Amer. Math. Soc. 328 (1991), 325349.
[11] Richter, S. and Sundberg, C., ‘A formula for the local Dirichlet integral’, Michigan Math. J. 38 (1991), 355379.
[12] Sarason, D. and Silva, J.-N. O., ‘Composition operators on a local Dirichlet space’, J. Anal. Math. 87 (2002), 433450.
[13] Siskakis, A. G., ‘Composition semigroups and the Cesáro operator on H p ’, J. Lond. Math. Soc. (2) 36 (1987), 153164.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 61 *
Loading metrics...

Abstract views

Total abstract views: 354 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 14th August 2018. This data will be updated every 24 hours.