Skip to main content
×
×
Home

A Boltzmann Approach to Percolation on Random Triangulations

  • Olivier Bernardi (a1), Nicolas Curien (a2) and Grégory Miermont (a3)
Abstract

We study the percolation model on Boltzmann triangulations using a generating function approach. More precisely, we consider a Boltzmann model on the set of finite planar triangulations, together with a percolation configuration (either site-percolation or bond-percolation) on this triangulation. By enumerating triangulations with boundaries according to both the boundary length and the number of vertices/edges on the boundary, we are able to identify a phase transition for the geometry of the origin cluster. For instance, we show that the probability that a percolation interface has length $n$ decays exponentially with $n$ except at a particular value $p_{c}$ of the percolation parameter $p$ for which the decay is polynomial (of order $n^{-10/3}$ ). Moreover, the probability that the origin cluster has size $n$ decays exponentially if $p<p_{c}$ and polynomially if $p\geqslant p_{c}$ .

The critical percolation value is $p_{c}=1/2$ for site percolation, and $p_{c}=(2\sqrt{3}-1)/11$ for bond percolation. These values coincide with critical percolation thresholds for infinite triangulations identified by Angel for site-percolation, and by Angel and Curien for bond-percolation, and we give an independent derivation of these percolation thresholds.

Lastly, we revisit the criticality conditions for random Boltzmann maps, and argue that at $p_{c}$ , the percolation clusters conditioned to have size $n$ should converge toward the stable map of parameter $\frac{7}{6}$ introduced by Le Gall and Miermont. This enables us to derive heuristically some new critical exponents.

Copyright
Footnotes
Hide All

We thank the Newton institute for hospitality during the Random Geometry program in 2015 where part of this work was completed. We acknowledge the support of the NSF grant DMS-1400859, and of the Agence Nationale de la Recherche via the grants ANR Liouville (ANR-15-CE40-0013) and ANR GRAAL (ANR-14-CE25-0014).

Footnotes
References
Hide All
[1] Angel, O., Growth and percolation on the uniform infinite planar triangulation . Geom. Funct. Anal. 13(2003), no. 5, 935974. https://doi.org/10.1007/s00039-003-0436-5.
[2] Angel, O. and Curien, N., Percolations on infinite random maps, half-plane models . Ann. Inst. H. Poincaré Probab. Stat. 51(2015), no. 2, 405431. https://doi.org/10.1214/13-AIHP583.
[3] Angel, O. and Schramm, O., Uniform infinite planar triangulation . Comm. Math. Phys. 241(2003), no. 2–3, 191213. https://doi.org/10.1007/s00220-003-0932-3.
[4] Bertoin, J., Curien, N., and Kortchemski, I., Random planar maps and growth-fragmentations . Ann. of Probab. 46(2018), no. 1, 207260. https://doi.org/10.1214/17-AOP1183.
[5] Borot, G., Bouttier, J., and Guitter, E., Loop models on random maps via nested loops: case of domain symmetry breaking and application to the potts model . J. Phys. A 45(2012), no. 49, 494017. https://doi.org/10.1088/1751-8113/45/49/494017.
[6] Borot, G., Bouttier, J., and Guitter, E., A recursive approach to the O (N) model on random maps via nested loops . J. Phys. A 45(2012), no. 4, 045002. https://doi.org/10.1088/1751-8113/45/4/045002.
[7] Bousquet-Mélou, M. and Jehanne, A., Polynomial equations with one catalytic variable, algebraic series and map enumeration . J. Combin. Theory Ser. B 96(2006), no. 5, 623672. https://doi.org/10.1016/j.jctb.2005.12.003.
[8] Bouttier, J., Di Francesco, P., and Guitter, E., Planar maps as labeled mobiles . Electron. J. Combin. 11(2004), no. 1, Research Paper 69.
[9] Budd, T., The peeling process of infinite Boltzmann planar maps . Electron. J. Combin. 23(2016), no. 1, Paper 1.28.
[10] Curien, N., Peeling random planar maps. https://www.math.u-psud.fr/∼curien/.
[11] Curien, N. and Kortchemski, I., Percolation on random triangulations and stable looptrees . Probab. Theory Related Fields 163(2015), no. 1–2, 303337. https://doi.org/10.1007/s00440-014-0593-5.
[12] Curien, N. and Le Gall, J.-F., Scaling limits for the peeling process on random maps . Ann. Inst. Henri Poincaré Probab. Stat. 53(2017), no. 1, 322357. https://doi.org/10.1214/15-AIHP718.
[13] Curien, N., Le Gall, J.-F., and Miermont, G., The Brownian cactus I. Scaling limits of discrete cactuses . Ann. Inst. Henri Poincaré Probab. Stat. 49(2013), no. 2, 340373. https://doi.org/10.1214/11-AIHP460.
[14] Flajolet, P. and Sedgewick, R., Analytic combinatorics. Cambridge University Press, Cambridge, 2009. https://doi.org/10.1017/CBO9780511801655.
[15] Gorny, M., Maurel-Segala, E., and Singh, A., The geometry of a critical percolation cluster on the UIPT. 2017. arxiv:1701.01667.
[16] Goulden, I. and Jackson, D., Combinatorial enumeration . Wiley-Interscience Series in Discrete Mathematics. John Wiley and Sons, New York, 1983.
[17] Le Gall, J.-F. and Miermont, G., Scaling limits of random planar maps with large faces . Ann. Probab. 39(2011), no. 1, 169. https://doi.org/10.1214/10-AOP549.
[18] Marckert, J.-F. and Miermont, G., Invariance principles for random bipartite planar maps . Ann. Probab. 35(2007), no. 5, 16421705. https://doi.org/10.1214/009117906000000908.
[19] Ménard, L., Volumes in the uniform infinite planar triangulation: from skeletons to generating functions. 2016. arxiv:1604.00908.
[20] Ménard, L. and Nolin, P., Percolation on uniform infinite planar maps . Electron. J. Probab. 19(2014), no. 79. https://doi.org/10.1214/EJP.v19-2675.
[21] Miermont, G., An invariance principle for random planar maps. In: Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, Discrete Math. Theor. Comput. Sci. Proc., AG, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006, pp. 39–57.
[22] Miermont, G., Invariance principles for spatial multitype Galton–Watson trees . Ann. Inst. Henri Poincaré Probab. Stat. 44(2008), no. 6, 11281161. https://doi.org/10.1214/07-AIHP157.
[23]Maple worksheet: site-percolation-triangulations.mws; see https://doi.org/10.4153/CJM-2018-009-x.
[24]Maple worksheet: bond-percolation-triangulations.mws; see https://doi.org/10.4153/CJM-2018-009-x.
[25] Richier, L., Universal aspects of critical percolation on random half-planar maps . Electron. J. Probab. 20(2015), Paper No. 129. https://doi.org/10.1214/EJP.v20-4041.
[26] Richier, L., Limits of the boundary of random planar maps. 2017. arxiv:1704.01950.
[27] Stephenson, R., Local convergence of large critical multi-type Galton–Watson trees and applications to random maps . J. Theoret. Probab. 31(2018), no. 1, 159205. https://doi.org/10.1007/s10959-016-0707-3.
[28] Tutte, W., A census of slicings . Canad. J. Math. 14(1962), 708722. https://doi.org/10.4153/CJM-1962-061-1.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed