[1] Alon, N. (2002) Testing subgraphs in large graphs. Random Struct. Alg. 21 359–370.

[2] Alon, N. and Fox, J. (2015) Easily testable graph properties. Combin. Probab. Comput. 24 646–657.

[3] Alon, N. and Shapira, A. (2006) A characterization of easily testable induced subgraphs. Combin. Probab. Comput. 15 791–805.

[4] Alon, N. and Shapira, A. (2008) A characterization of the (natural) graph properties testable with one-sided error. SIAM J. Comput. 37 1703–1727.

[5] Conlon, D. and Fox, J. (2012) Bounds for graph regularity and removal lemmas. Geom. Funct. Anal. 22 1191–1256.

[6] Conlon, D. and Fox, J. (2013) Graph removal lemmas. In Surveys in Combinatorics 2013, Vol. 409 of London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 1–49.

[7] Cooper, J. N. (2006) A permutation regularity lemma. Electron. J. Combin. 13 R22.

[8] Diaconis, P. personal communication.

[9] Diaconis, P. (1988) *Group Representations in Probability and Statistics*, Vol. 11 of Lecture Notes Monograph Series, Institute of Mathematical Statistics.

[10] Diaconis, P. and Graham, R. L. (1977) Spearman's footrule as a measure of disarray. J. Roy. Statist. Soc. Ser. B 39 262–268.

[11] Erdős, P. and Szekeres, G. (1935) A combinatorial problem in geometry. Compositio Math. 2 463–470.

[12] Fox, J. Stanley–Wilf limits are typically exponential. *Adv. Math.*, to appear.

[13] Fox, J. and Lovász, L. M. (2016) A tight bound for Green's arithmetic triangle removal lemma in vector spaces. Adv. Math. 321 287–297.

[14] Fox, J., Lovász, L. M. and Zhao, Y. (2016) On regularity lemmas and their algorithmic applications. Combin. Probab. Comput. 26 481–505.

[15] Fox, J. and Wei, F. Strongly testing hereditary permutation properties with polynomial query complexity. In preparation.

[16] Füredi, Z. and Hajnal, P. (1992) Davenport–Schinzel theory of matrices. Discrete Math. 103 233–251.

[17] Goldreich, O., Goldwasser, S. and Ron, D. (1998) Property testing and its applications to learning and approximation. J. Assoc. Comput. Mach. 45 653–750.

[18] Goldreich, O. and Trevisan, L. (2003) Three theorems regarding testing graph properties. Random Struct. Alg. 23 23–57.

[19] Hoppen, C., Kohayakawa, Y. and Sampaio, R. M. (2012) A note on permutation regularity. Discrete Appl. Math. 160 2716–2727.

[20] Hoppen, C., Kohayakawa, Y., Moreira, C. G., Ráth, B. and Sampaio, R. M. (2013) Limits of permutation sequences. J. Combin. Theory Ser. B 103 93–113.

[21] Hoppen, C., Kohayakawa, Y., Moreira, C. G. and Sampaio, R. M. (2011) Testing permutation properties through subpermutations. Theoret. Comput. Sci. 412 3555–3567.

[22] Klazar, M. (2000) The Füredi–Hajnal conjecture implies the Stanley–Wilf conjecture. In Formal Power Series and Algebraic Combinatorics (Krob, D., Mikhalev, A. A. and Mikhalev, A. V., eds), Springer, pp. 250–255.

[23] Klimošová, T. and Král', D. (2012) Hereditary properties of permutations are strongly testable. arXiv:1208.2624 An early version appeared in *SODA '14: 25th Annual ACM–SIAM Symposium on Discrete Algorithms*, ACM (2014), pp. 1164–1173.

[24] Kruskal, J. B. Jr (1953) Monotonic subsequences. Proc. Amer. Math. Soc. 4 264–273.

[25] Lovász, L. (2012) *Large Networks and Graph Limits*, Vol. 60 of American Mathematical Society Colloquium Publications, AMS.

[26] Marcus, A. and Tardos, G. (2004) Excluded permutation matrices and the Stanley–Wilf conjecture. J. Combin. Theory Ser. A 107 153–160.

[27] Monge, G. (1781), Mémoire sur la théorie des déblais et des remblais. *Histoire de l'Académie Royale des Sciences de Paris*, pp. 666–704.

[28] Rubinfield, R. and Sudan, M. (1996) Robust characterization of polynomials with applications to program testing. SIAM J. Comput. 25 252–271.

[29] Rubner, Y., Tomasi, C. and Guibas, L. J. (2000) The earth mover's distance as a metric for image retrieval. Int. J. Comput. Vision. 40 99–121.

[30] Vaidya, P. (1989) Geometry helps in matching. SIAM J. Comput. 18 1201–1225.