Skip to main content

Cyclotomic analogues of finite multiple zeta values

  • Henrik Bachmann (a1), Yoshihiro Takeyama (a2) and Koji Tasaka (a3)

We study the values of finite multiple harmonic $q$ -series at a primitive root of unity and show that these specialize to the finite multiple zeta value (FMZV) and the symmetric multiple zeta value (SMZV) through an algebraic and analytic operation, respectively. Further, we prove the duality formula for these values, as an example of linear relations, which induce those among FMZVs and SMZVs simultaneously. This gives evidence towards a conjecture of Kaneko and Zagier relating FMZVs and SMZVs. Motivated by the above results, we define cyclotomic analogues of FMZVs, which conjecturally generate a vector space of the same dimension as that spanned by the finite multiple harmonic $q$ -series at a primitive root of unity of sufficiently large degree.

Hide All
[Bra05a] Bradley, D. M., Multiple q-zeta values , J. Algebra 283 (2005), 752798.
[Bra05b] Bradley, D. M., Duality for finite multiple harmonic q-series , Discrete Math. 300 (2005), 4456.
[Car56] Carlitz, L., A degenerate Staudt–Clausen theorem , Arch. Math. (Basel) 7 (1956), 2833.
[Hof97] Hoffman, M. E., The algebra of multiple harmonic series , J. Algebra 194 (1997), 477495.
[Hof15] Hoffman, M. E., Quasi-symmetric functions and mod p multiple harmonic sums , Kyushu J. Math. 69 (2015), 345366.
[IKOO11] Ihara, K., Kajikawa, J., Ohno, Y. and Okuda, J., Multiple zeta values vs. multiple zeta-star values , J. Algebra 332 (2011), 187208.
[IKZ06] Ihara, K., Kaneko, M. and Zagier, D., Derivation and double shuffle relations for multiple zeta values , Compos. Math. 142 (2006), 307338.
[Jar14] Jarossay, D., Double mélange des multizêtas finis et multizêtas symétrisés , C. R. Math. 352 (2014), 767771.
[Kaw10] Kawashima, G., A generalization of the duality for finite multiple harmonic q-series , Ramanujan J. 21 (2010), 335347.
[Kon09] Kontsevich, M., Holonomic D-modules and positive characteristic , Jpn. J. Math. 4 (2009), 125.
[Mur16] Murahara, H., A note on finite real multiple zeta values , Kyushu J. Math. 70 (2016), 197204.
[OO07] Ohno, Y. and Okuda, J., On the sum formula for the q-analogue of non-strict multiple zeta values , Proc. Amer. Math. Soc. 135 (2007), 30293037.
[OOZ12] Ohno, Y., Okuda, J. and Zudilin, W., Cyclic q-MZSV sum , J. Number Theory 132 (2012), 144155.
[OT07] Okuda, J. and Takeyama, Y., On relations for the multiple q-zeta values , Ramanujan J. 14 (2007), 379387.
[SW15] Saito, S. and Wakabayashi, N., Sum formula for finite multiple zeta values , J. Math. Soc. Japan 67 (2015), 10691076.
[Ste50] Steffensen, J. F., Interpolation, second edition (Chelsea, New York, 1950).
[Tak09] Takeyama, Y., A q-analogue of non-strict multiple zeta values and basic hypergeometric series , Proc. Amer. Math. Soc. 137 (2009), 29973002.
[Tak12] Takeyama, Y., Quadratic relations for a q-analogue of multiple zeta values , Ramanujan J. 27 (2012), 1528.
[Tak13] Takeyama, Y., The algebra of a q-analogue of multiple harmonic series , SIGMA Symmetry Integrability Geom. Methods Appl. 9 (2013), 061, 1–15.
[Was97] Washington, L., Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83 (Springer, New York, 1997).
[Zha07] Zhao, J., q-multiple zeta functions and q-multiple polylogarithms , Ramanujan J. 14 (2007), 189221.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed