Skip to main content Accessibility help
×
Home

Local duality for representations of finite group schemes

  • Dave Benson (a1), Srikanth B. Iyengar (a2), Henning Krause (a3) and Julia Pevtsova (a4)

Abstract

A duality theorem for the stable module category of representations of a finite group scheme is proved. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $\mathfrak{p}$ -local and $\mathfrak{p}$ -torsion subcategories of the stable category, for each homogeneous prime ideal $\mathfrak{p}$ in the cohomology ring of the group scheme.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Local duality for representations of finite group schemes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Local duality for representations of finite group schemes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Local duality for representations of finite group schemes
      Available formats
      ×

Copyright

Footnotes

Hide All

SBI was partly supported by NSF grant DMS-1503044 and DMS-1700985 and JP was partly supported by NSF grants DMS-0953011 and DMS-1501146.

Footnotes

References

Hide All
[Aus78] Auslander, M., Functors and morphisms determined by objects , in Representation theory of algebras, Philadelphia, PA, 1976, Lecture Notes in Pure and Applied Mathematics, vol. 37 (Dekker, New York, NY, 1978), 1244.
[Bal10] Balmer, P., Spectra, spectra, spectra—tensor triangular spectra versus Zariski spectra of endomorphism rings , Algebr. Geom. Topol. 10 (2010), 15211563.
[BDS16] Balmer, P., Dell’Ambrogio, I. and Sanders, B., Grothendieck–Neeman duality and the Wirthmüller isomorphism , Compos. Math. 152 (2016), 17401776.
[BHV18] Barthel, T., Heard, D. and Valenzuela, G., Local duality for structured ring spectra , J. Pure Appl. Algebra 222 (2018), 433463.
[Ben84] Benson, D., Modular representation theory: new trends and methods, Lecture Notes in Mathematics, vol. 1081 (Springer, Berlin, 1984).
[Ben01] Benson, D., Modules with injective cohomology, and local duality for a finite group , New York J. Math. 7 (2001), 201215.
[Ben08] Benson, D., Idempotent kG-modules with injective cohomology , J. Pure Appl. Algebra 212 (2008), 17441746.
[BCR96] Benson, D. J., Carlson, J. F. and Rickard, J., Complexity and varieties for infinitely generated modules. II , Math. Proc. Cambridge Philos. Soc. 120 (1996), 597615.
[BG08] Benson, D. and Greenlees, J. P. C., Localization and duality in topology and modular representation theory , J. Pure Appl. Algebra 212 (2008), 17161743.
[BG14] Benson, D. and Greenlees, J. P. C., Stratifying the derived category of cochains on BG for G a compact Lie group , J. Pure Appl. Algebra 218 (2014), 642650.
[BIK08] Benson, D. J., Iyengar, S. B. and Krause, H., Local cohomology and support for triangulated categories , Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 575621.
[BIK11a] Benson, D. J., Iyengar, S. B. and Krause, H., Stratifying triangulated categories , J. Topology 4 (2011), 641666.
[BIK11b] Benson, D. J., Iyengar, S. B. and Krause, H., Stratifying modular representations of finite groups , Ann. of Math. (2) 174 (2011), 16431684.
[BIK12] Benson, D. J., Iyengar, S. B. and Krause, H., Representations of finite groups: local cohomology and support, Oberwolfach Seminars, vol. 43 (Birkhäuser/Springer, Basel, 2012).
[BIK15] Benson, D. J., Iyengar, S. B. and Krause, H., A local-global principle for small triangulated categories , Math. Proc. Cambridge Philos. Soc. 158 (2015), 451476.
[BIKP17] Benson, D. J., Iyengar, S. B., Krause, H. and Pevtsova, J., Colocalising subcategories of modules over finite group schemes , Ann. K-Theory 2 (2017), 387408.
[BIKP18] Benson, D. J., Iyengar, S. B., Krause, H. and Pevtsova, J., Stratification for module categories of finite group schemes , J. Amer. Math. Soc. 31 (2018), 265302.
[BK02] Benson, D. J. and Krause, H., Pure injectives and the spectrum of the cohomology ring of a finite group , J. Reine Angew. Math. 542 (2002), 2351.
[BGG78] Bernstein, I. N., Gelfand, I. M. and Gelfand, S. I., Algebraic vector bundles on P n and problems of linear algebra , Funct. Anal. Appl. 12 (1978), 212214.
[BK89] Bondal, A. I. and Kapranov, M. M., Representable functors, Serre functors, and mutations , Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 11831205; 1337; English translation in Math. USSR Izv. 35 (1990), 519–541.
[BH98] Bruns, W. and Herzog, J., Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, revised edition (Cambridge University Press, Cambridge, 1998).
[Car96] Carlson, J. F., Modules and group algebras, Lecture Notes in Mathematics ETH Zürich (Birkhäuser, Basel, 1996).
[CE56] Cartan, H. and Eilenberg, S., Homological algebra (Princeton University Press, Princeton, NJ, 1956).
[Cra91] Crawley-Boevey, W., Tame algebras and generic modules , Proc. Lond. Math. Soc. (3) 63 (1991), 241265.
[Cra92] Crawley-Boevey, W., Modules of finite length over their endomorphism rings , in Representations of algebras and related topics, Kyoto, 1990, London Mathematical Society Lecture Note Series, vol. 168 (Cambridge University Press, Cambridge, 1992), 127184.
[DGI06] Dwyer, W., Greenlees, J. P. C. and Iyengar, S., Duality in algebra and topology , Adv. Math. 200 (2006), 357402.
[Far07] Farnsteiner, R., Support spaces and Auslander–Reiten components , in Lie algebras, vertex operator algebras and their applications, Contemporary Mathematics, vol. 442 (American Mathematical Society, Providence, RI, 2007), 6187.
[FIJ03] Frankild, A., Iyengar, S. and Jørgensen, P., Dualizing DG modules and Gorenstein DG algebras , J. Lond. Math. Soc. (2) 68 (2003), 288306.
[FS97] Friedlander, E. M. and Suslin, A., Cohomology of finite group schemes over a field , Invent. Math. 127 (1997), 209270.
[Hap88] Happel, D., Triangulated categories in the representation theory of finite dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119 (Cambridge University Press, Cambridge, 1988).
[Hap91] Happel, D., On Gorenstein algebras , in Representation theory of finite groups and finite-dimensional algebras, Bielefeld, 1991, Progress in Mathematics, vol. 95 (Birkhäuser, Basel, 1991), 389404.
[HPR82] Happel, D., Preiser, U. and Ringel, C. M., Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to D Tr-periodic modules , in Representation theory II, Proc. Second Internat. Conf., Ottawa, ON, 1979, Lecture Notes in Mathematics, vol. 832 (Springer, Berlin, 1982), 280294.
[Har77] Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, New York, NY, 1977).
[Jan03] Jantzen, J. C., Representations of algebraic groups, second edition (American Mathematical Society, Providence, RI, 2003).
[Kra00] Krause, H., Auslander–Reiten theory via Brown representability , K-Theory 20 (2000), 331344.
[Kra03] Krause, H., A short proof of Auslander’s defect formula , Linear Algebra Appl. 365 (2003), 267270.
[Kra05] Krause, H., The stable derived category of a noetherian scheme , Compos. Math. 141 (2005), 11281162.
[Kra15] Krause, H., Krull–Schmidt categories and projective covers , Expo. Math. 33 (2015), 535549.
[KL06] Krause, H. and Le, J., The Auslander–Reiten formula for complexes of modules , Adv. Math. 207 (2006), 133148.
[KR00] Krause, H. and Reichenbach, U., Endofiniteness in stable homotopy theory , Trans. Amer. Math. Soc. 353 (2000), 157173.
[Liu10] Liu, S., Auslander–Reiten theory in a Krull–Schmidt category , São Paulo J. Math. Sci. 4 (2010), 425472.
[Rav92] Ravenel, D. C., Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128 (Princeton University Press, Princeton, NJ, 1992).
[RV02] Reiten, I. and Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality , J. Amer. Math. Soc. 15 (2002), 295366.
[SY11] Skowroński, A. and Yamagata, K., Frobenius algebras. I, EMS Textbooks in Mathematics (European Mathematical Society (EMS), Zürich, 2011).
[Wat79] Waterhouse, W. C., Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66 (Springer, New York, NY, 1979).
[Yul17] Yuliawan, F., Actions of Hochschild cohomology and local duality in modular representation theory, PhD thesis, Universität Bielefeld (2017).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed