No CrossRef data available.
Published online by Cambridge University Press: 04 August 2023
We study stationary measures for iterated function systems (considered as random dynamical systems) consisting of two piecewise affine interval homeomorphisms, called Alsedà–Misiurewicz (AM) systems. We prove that for an open set of parameters, the unique non-atomic stationary measure for an AM system has Hausdorff dimension strictly smaller than  $1$. In particular, we obtain singularity of these measures, answering partially a question of Alsedà and Misiurewicz [Random interval homeomorphisms. Publ. Mat. 58(suppl.) (2014), 15–36].
$1$. In particular, we obtain singularity of these measures, answering partially a question of Alsedà and Misiurewicz [Random interval homeomorphisms. Publ. Mat. 58(suppl.) (2014), 15–36].
 $\left({S}^1\right)$
. J. Stat. Phys. 187(1) (2022), Paper no. 7, 13 pp.10.1007/s10955-022-02903-9CrossRefGoogle Scholar
$\left({S}^1\right)$
. J. Stat. Phys. 187(1) (2022), Paper no. 7, 13 pp.10.1007/s10955-022-02903-9CrossRefGoogle Scholar $\mathrm{Homeo}({S}^1)$
. Comm. Math. Phys. 356(3) (2017), 1083–1116.10.1007/s00220-017-2996-5CrossRefGoogle Scholar
$\mathrm{Homeo}({S}^1)$
. Comm. Math. Phys. 356(3) (2017), 1083–1116.10.1007/s00220-017-2996-5CrossRefGoogle Scholar $\sigma$
-finite acim for a random iteration of intermittent Markov maps with uniformly contractive part. Stoch. Dyn. 21(3) (2021), Paper no. 2140003, 14 pp.10.1142/S0219493721400037CrossRefGoogle Scholar
$\sigma$
-finite acim for a random iteration of intermittent Markov maps with uniformly contractive part. Stoch. Dyn. 21(3) (2021), Paper no. 2140003, 14 pp.10.1142/S0219493721400037CrossRefGoogle Scholar