Skip to main content Accessibility help
×
Home

Evaporation-driven vapour microflows: analytical solutions from moment methods

  • Anirudh S. Rana (a1) (a2), Duncan A. Lockerby (a3) and James E. Sprittles (a2)

Abstract

Macroscopic models based on moment equations are developed to describe the transport of mass and energy near the phase boundary between a liquid and its rarefied vapour due to evaporation and hence, in this study, condensation. For evaporation from a spherical droplet, analytic solutions are obtained to the linearised equations from the Navier–Stokes–Fourier, regularised 13-moment and regularised 26-moment frameworks. Results are shown to approach computational solutions to the Boltzmann equation as the number of moments are increased, with good agreement for Knudsen number ${\lesssim}1$ , whilst providing clear insight into non-equilibrium phenomena occurring adjacent to the interface.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evaporation-driven vapour microflows: analytical solutions from moment methods
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Evaporation-driven vapour microflows: analytical solutions from moment methods
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Evaporation-driven vapour microflows: analytical solutions from moment methods
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: a.rana.2@warwick.ac.uk

References

Hide All
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one component systems. Phys. Rev. 94 (3), 511525.
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press.
Bond, M. & Struchtrup, H. 2004 Mean evaporation and condensation coefficients based on energy dependent condensation probability. Phys. Rev. E 70, 061605.
Cercignani, C. 1975 Theory and Application of the Boltzmann Equation. Academic Press.
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Nonuniform Gases. Cambridge University Press.
Cheng, S., Lechman, J. B., Plimpton, S. J. & Grest, G. S. 2011 Evaporation of Lennard-Jones fluids. J. Chem. Phys. 134, 224704.
Chernyak, V. G. & Margilevskiy, A. Y. 1989 The kinetic theory of heat and mass transfer from a spherical particle in a rarefied gas. Intl J. Heat Mass Transfer 32, 21272134.
Claydon, R., Shrestha, A., Rana, A., Sprittles, J. & Lockerby, D. 2017 Fundamental solutions to the regularised 13-moment equations: efficient computation of three-dimensional kinetic effects. J. Fluid Mech. 833, R4.
Dhavaleswarapu, H. K., Murthy, J. Y. & Garimella, S. V. 2012 Numerical investigation of an evaporating meniscus in a channel. Intl J. Heat Mass Transfer 55, 915924.
Fuchs, N. A. 1959 Vaporisation and Droplet Growth in Gaseous Media. Pergamon.
Grad, H. 1949 On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2, 331.
de Groot, S. R. & Mazur, P. 1984 Non-equilibrium Thermodynamics. Dover.
Gu, X. J. & Emerson, D. 2007 A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions. J. Comput. Phys. 225, 263283.
Gu, X. J. & Emerson, D. 2009 A high-order moment approach for capturing nonequilibrium phenomena in the transition regime. J. Fluid Mech. 636, 177216.
Gu, X. J. & Emerson, D. 2014 Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas. Phys. Rev. E 89, 063020.
Gu, X. J., Emerson, D. & Tang, G. 2010 Analysis of the slip coefficient and defect velocity in the Knudsen layer of a rarefied gas using the linearized moment equations. Phys. Rev. E 81, 016313.
Hodes, M., Steigerwalt, L. L., Shi, G., Cowley, A., Enright, R. & MacLachlan, S. 2015 Effect of evaporation and condensation at menisci on apparent thermal slip. Trans. ASME J. Heat Transfer 7, 137.
Hołyst, R. & Litniewski, M. 2008 Heat transfer at the nanoscale: evaporation of nanodroplets. Phys. Rev. Lett. 100, 055701.
Hoyst, R., Litniewski, M., Jakubczyk, D., Kolwas, K., Kolwas, M., Kowalski, K., Migacz, S., Palesa, S. & Zientara, M. 2013 Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations. Rep. Prog. Phys. 76 (3), 034601.
Kogan, M. N. 1969 Rarefied Gas Dynamics. Plenum.
Ling, Z., Zhang, Z., Shi, G., Fang, X., Wang, L., Gao, X., Fang, Y., Xu, T., Wang, S. & Liu, X. 2014 Review on thermal management systems using phase change materials for electronic components, Li–ion batteries and photovoltaic modules. Renew. Sust. Energy Rev. 31, 427.
Maxwell, J. C. 1867 On the dynamical theory of gases. Phil. Trans. R. Soc. Lond. 157, 4988.
McGaughey, A. J. H. & Ward, C. A. 2002 Temperature discontinuity at the surface of an evaporating droplet. J. Appl. Phys. 91 (10), 6406.
Persad, A. H. & Ward, C. A. 2016 Expressions for the evaporation and condensation coefficients in the Hertz–Knudsen relation. Chem. Rev. 116 (14), 77277767.
Plawsky, J. L., Fedorov, A. G., Garimella, S. V., Ma, H. B., Maroo, S. C., Chen, L. & Nam, Y. 2014 Nano- and microstructures for thin-film evaporation – a review. Nanoscale Microscale Thermophys. Engng 18 (3), 251269.
Rahimi, P. & Ward, C. A. 2005 Kinetics of evaporation: statistical rate theory approach. Intl J. Thermodyn. 8 (1), 114.
Rana, A., Ravichandran, R., Park, J. H. & Myong, R. S. 2016 Microscopic molecular dynamics characterization of the second-order non-Navier–Fourier constitutive laws in the Poiseuille gas flow. Phys. Fluids 28 (8), 082003.
Rana, A. S. & Struchtrup, H. 2016 Thermodynamically admissible boundary conditions for the regularized 13 moment equations. Phys. Fluids 28, 027105.
Rana, A. S., Torrilhon, M. & Struchtrup, H. 2013 A robust numerical method for the R13 equations of rarefied gas dynamics: application to lid driven cavity. J. Comput. Phys. 236, 169.
Schrage, R. W. 1953 A Theoretical Study of Interphase Mass Transfer. Columbia University Press.
Sharipov, F. & Seleznev, V. 1998 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one. J. Phys. Chem. Ref. Data 27, 657.
Sherwood, L. 2005 Fundamentals of Physiology: A Human Perspective. Brooks/Cole Press.
Sone, Y. 2007 Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkhäuser.
Sone, Y. & Onishi, Y. 1978 Kinetic theory of evaporation and condensation–hydrodynamic equation and slip boundary condition. J. Phys. Soc. Japan 44 (6), 19811994.
Struchtrup, H. 2004 Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys. Fluids 16, 3921.
Struchtrup, H. 2005 Macroscopic Transport Equations for Rarefied Gas Flows. Springer.
Struchtrup, H. 2008 Linear kinetic heat transfer: moment equations, boundary conditions, and Knudsen layers. Physica A 387, 17501766.
Struchtrup, H. & Frezzotti, A. 2016 Evaporation/Condensation boundary conditions for the regularized 13 moment equations. AIP Conf. Proc. 1786, 40002.
Struchtrup, H. & Taheri, P. 2011 Macroscopic transport models for rarefied gas flows: a brief review. IMA J. Appl. Maths 76 (5), 672.
Struchtrup, H. & Torrilhon, M. 2003 Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15, 2668.
Struchtrup, H. & Torrilhon, M. 2008 Higher-order effects in rarefied channel flows. Phys. Rev. E 78, 046301.
Taheri, P., Rana, A. S., Torrilhon, M. & Struchtrup, H. 2009 Macroscopic description of steady and unsteady rarefaction effects in boundary value problems of gas dynamics. Contin. Mech. Thermodyn. 21, 423.
Taheri, P. & Struchtrup, H. 2009 Effects of rarefaction in micro flows between coaxial cylinders. Phys. Rev. E 80, 066317.
Takata, S., Sone, Y., Lhuilliere, D. & Wakabayashi, M. 1998 Evaporation from or condensation onto a sphere: numerical analysis of the Boltzmann equation for hard-sphere molecules. Comput. Math. Appl. 35 (1/2), 193214.
Torrilhon, M. 2010 Slow gas microflow past a sphere: analytical solution based on moment equations. Phys. Fluids 22 (7), 072001.
Torrilhon, M. 2016 Modeling nonequilibrium gas flow based on moment equations. Annu. Rev. Fluid Mech. 48, 429.
Torrilhon, M. & Struchtrup, H. 2008 Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J. Comput. Phys. 227, 1982.
Truesdell, C. & Muncaster, R. G. 1980 Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic Press.
Xu, J., Kjelstrup, S., Bedeaux, D., Rsjorde, A. & Rekvig, L. 2006 Verification of Onsager’s reciprocal relations for evaporation and condensation using non-equilibrium molecular dynamics. J. Colloid Interface Sci. 299 (1), 452463.
Young, J. B. 1991 Condensation and evaporation of fluid droplets in a pure vapour at arbitrary Knudsen number. Intl J. Heat Mass Transfer 34, 16491661.
Ytrehus, T. & Ostmo, S. 1996 Kinetic approach to interface processes. Intl J. Multiphase Flow 22, 133135.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
UNKNOWN
Supplementary materials

Rana et al. supplementary material
Rana et al. supplementary material 1

 Unknown (119 KB)
119 KB

Evaporation-driven vapour microflows: analytical solutions from moment methods

  • Anirudh S. Rana (a1) (a2), Duncan A. Lockerby (a3) and James E. Sprittles (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed