To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.
The ability to actively or passively manipulate a flow field to bring about a desired change is of immense technological importance. The potential benefits of improving flow control systems range from saving billions of dollars in fuel costs for land, air and sea vehicles to achieving more economically competitive and environmentally sound industrial processes involving fluid flows. This book provides a thorough treatment of the basics of flow control and control practices that can be used to produce desired effects. Among topics covered are transition delay, separation prevention, drag reduction, lift augmentation, turbulence suppression, noise abatement, and heat and mass transfer enhancement. The final chapter explores the frontiers of flow control strategies, especially as applied to turbulent flows. Intended for engineering and physics students, researchers and practitioners, Flow Control brings together in a single source a wealth of information on practices and developments in this very active field.
This book presents the theory and applications of radiative transfer in the atmosphere. It is written for graduate students and researchers in the fields of meteorology and related sciences. The book begins with important basic definitions of the radiative transfer theory. It presents the hydrodynamic derivation of the radiative transfer equation and the principles of variance. The authors examine in detail various quasi-exact solutions of the radiative transfer equation and give a thorough treatment of the radiative perturbation theory. A rigorous treatment of Mie scattering is given, including Rayleigh scattering as a special case, and the important efficiency factors for extinction, scattering and absorption are derived. The fundamentals of remote sensing applications of radiative transfer are presented. Problems of varying degrees of difficulty are included at the end of each chapter, allowing readers to further their understanding of the materials covered in the book.
This book presents the current state of the art in computational models for turbulent reacting flows, and analyzes carefully the strengths and weaknesses of the various techniques described. The focus is on formulation of practical models as opposed to numerical issues arising from their solution. A theoretical framework based on the one-point, one-time joint probability density function (PDF) is developed. It is shown that all commonly employed models for turbulent reacting flows can be formulated in terms of the joint PDF of the chemical species and enthalpy. Models based on direct closures for the chemical source term as well as transported PDF methods are covered in detail. An introduction to the theory of turbulent and turbulent scalar transport is provided for completeness. The book is aimed at chemical, mechanical, and aerospace engineers in academia and industry, as well as developers of computational fluid dynamics codes for reacting flows.
Thanks to high-speed computers and advanced algorithms, the important field of modelling multiphase flows is an area of rapid growth. This one-stop account – now in paperback, with corrections from the first printing – is the ideal way to get to grips with this topic, which has significant applications in industry and nature. Each chapter is written by an acknowledged expert and includes extensive references to current research. All of the chapters are essentially independent and so the book can be used for a range of advanced courses and the self-study of specific topics. No other book covers so many topics related to multiphase flow, and it will therefore be warmly welcomed by researchers and graduate students of the subject across engineering, physics, and applied mathematics.
This book, first published in 2003, is an exposition of what we knew about the physics underlying the onset of instability in liquid sheets and jets. Wave motion and breakup phenomena subsequent to the onset of instability are carefully explained. Physical concepts are established through rigorous mathematics, accurate numerical analyses and comparison of theory with experiment. Exercises are provided for students, and these help familiarize the reader with the required mathematical tools. This book further provides a rational basis for designing equipment and processes involving the phenomena of sheet and jet breakup. Researchers interested in transition to turbulence, hydrodynamic stability or combustion will find this book a highly useful resource, whether their background lies in engineering, physics, chemistry, biology, medicine or applied mathematics.
The general area of geophysical fluid mechanics is truly interdisciplinary. Now ideas from statistical physics are being applied in novel ways to inhomogeneous complex systems such as atmospheres and oceans. In this book, the basic ideas of geophysics, probability theory, information theory, nonlinear dynamics and equilibrium statistical mechanics are introduced and applied to large time-selective decay, the effect of large scale forcing, nonlinear stability, fluid flow on a sphere and Jupiter's Great Red Spot. The book is the first to adopt this approach and it contains many recent ideas and results. Its audience ranges from graduate students and researchers in both applied mathematics and the geophysical sciences. It illustrates the richness of the interplay of mathematical analysis, qualitative models and numerical simulations which combine in the emerging area of computational science.
The flow of granular materials such as sand, snow, coal, and catalyst particles is common occurrence in natural and industrial settings. The mechanics of these materials is not well understood. They are important since a large fraction of the materials handled and processed in the chemical, metallurgical, pharmaceutical, and food processing industries are granular in nature. This book describes the theories for granular flow based mainly on continuum models although alternative discrete models are also discussed briefly. The level is appropriate for advanced undergraduates or beginning graduate students. The goal is to inform the reader about observed phenomena, some available models, and their shortcomings and to visit some issues that remain unresolved. There is a selection of problems at the end of the chapters to encourage exploration, and extensive references are provided.
The Navier-Stokes equations were firmly established in the 19th Century as the system of nonlinear partial differential equations which describe the motion of most commonly occurring fluids in air and water, and since that time exact solutions have been sought by scientists. Collectively these solutions allow a clear insight into the behavior of fluids, providing a vehicle for novel mathematical methods and a useful check for computations in fluid dynamics, a field in which theoretical research is now dominated by computational methods. This 2006 book draws together exact solutions from widely differing sources and presents them in a coherent manner, in part by classifying solutions via their temporal and geometric constraints. It will prove to be a valuable resource to all who have an interest in the subject of fluid mechanics, and in particular to those who are learning or teaching the subject at the senior undergraduate and graduate levels.
This book is a rigorous, self-contained exposition of the mathematical theory for wave propagation in layered media with arbitrary amounts of intrinsic absorption. The theory, previously unpublished in book form, provides solutions for fundamental wave-propagation problems and corresponding numerical results in the context of any media with a linear response (elastic or anelastic). It provides new insights regarding the physical characteristics for two- and three-dimensional anelastic body and surface waves. The book is an excellent graduate-level textbook. It permits fundamental elastic wave propagation to be taught in the broader context of wave propagation in any media with a linear response. The book is also a valuable reference text. It provides tools for solving problems in seismology, geotechnical engineering, exploration geophysics, solid mechanics, and acoustics. The numerical examples and problem sets facilitate understanding by emphasizing important aspects of both the theory and the numerical results.
The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This 2006 book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra.
This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section, in turn, uses a plethora of mathematical techniques in the investigation of these three problems. Among the techniques used in the book the reader will find integral equations based on Green's functions, various inequalities between the kinetic and potential energy, and integral identities which are indispensable for proving the uniqueness theorems. For constructing examples of non-uniqueness usually referred to as 'trapped modes' the so-called inverse procedure is applied. Linear Water Waves will serve as an ideal reference for those working in fluid mechanics, applied mathematics, and engineering.
Reactive flows encompass a broad range of physical phenomena, interacting over many different time and space scales. Such flows occur in combustion, chemical lasers, the earth's oceans and atmosphere, and stars and interstellar space. Despite the obvious physical differences in these flows, there is a striking similarity in the forms of their descriptive equations. Thus, the considerations and procedures for constructing numerical models of these systems are also similar, and these similarities can be exploited. Moreover, using the latest technology, what were once difficult and expensive computations can now be done on desktop computers. This book takes account of the explosive growth in computer technology and the greatly increased capacity for solving complex reactive flow problems that have occurred since the first edition of Numerical Simulation of Reactive Flow was published in 1987. It presents algorithms useful for reactive flow simulations, describes trade-offs involved in their use, and gives guidance for building and using models of complex reactive flows.
This book was published in 2004. The Interaction of Ocean Waves and Wind describes in detail the two-way interaction between wind and ocean waves and shows how ocean waves affect weather forecasting on timescales of 5 to 90 days. Winds generate ocean waves, but at the same time airflow is modified due to the loss of energy and momentum to the waves; thus, momentum loss from the atmosphere to the ocean depends on the state of the waves. This volume discusses ocean wave evolution according to the energy balance equation. An extensive overview of nonlinear transfer is given, and as a by-product the role of four-wave interactions in the generation of extreme events, such as freak waves, is discussed. Effects on ocean circulation are described. Coupled ocean-wave, atmosphere modelling gives improved weather and wave forecasts. This volume will interest ocean wave modellers, physicists and applied mathematicians, and engineers interested in shipping and coastal protection.
This book presents and analyses vortex methods as a tool for the direct numerical simulation of incompressible viscous flows. Vortex methods have matured, offering an interesting alternative to finite difference and spectral methods for high-resolution numerical solutions of the Navier–Stokes equations. Research in the numerical analysis aspects of vortex methods has provided a solid mathematical background for understanding the accuracy and stability of the method. At the same time vortex methods retain their appealing physical character that was the motivation for their introduction. Scientists working in the areas of numerical analysis and fluid mechanics will benefit from this book, which may serve both communities as both a reference monograph and a textbook for computational fluid dynamics courses.
Ship-shaped offshore units are some of the more economical systems for the development of offshore oil and gas, and are often preferred in marginal fields. These systems are especially attractive to develop oil and gas fields in deep and ultra-deep water areas and remote locations away from existing pipeline infrastructures. Recently, the ship-shaped offshore units have been applied to near shore oil and gas terminals. This 2007 text is an ideal reference on the technologies for design, building and operation of ship-shaped offshore units, within inevitable space requirements. The book includes a range of topics, from the initial contracting strategy to decommissioning and the removal of the units concerned. Coverage includes both fundamental theory and principles of the individual technologies. This book will be useful to students who will be approaching the subject for the first time as well as designers working on the engineering for ship-shaped offshore installations.
Written by a group of international experts in their field, this book is a review of Lagrangian observation, analysis and assimilation methods in physical and biological oceanography. This multidisciplinary text presents new results on nonlinear analysis of Lagrangian dynamics, the prediction of particle trajectories, and Lagrangian stochastic models. It includes historical information, up-to-date developments, and speculation on future developments in Lagrangian-based observations, analysis, and modeling of physical and biological systems. Containing contributions from experimentalists, theoreticians, and modelers in the fields of physical oceanography, marine biology, mathematics, and meteorology, this book will be of great interest to researchers and graduate students looking for both practical applications and information on the theory of transport and dispersion in physical systems, biological modeling, and data assimilation.
Numerical simulation of compressible, inviscid time-dependent flow is a major branch of computational fluid dynamics. Its primary goal is to obtain accurate representation of the time evolution of complex flow patterns, involving interactions of shocks, interfaces, and rarefaction waves. The Generalized Riemann Problem (GRP) algorithm, developed by the authors for this purpose, provides a unifying 'shell' which comprises some of the most commonly used numerical schemes of this process. This monograph gives a systematic presentation of the GRP methodology, starting from the underlying mathematical principles, through basic scheme analysis and scheme extensions (such as reacting flow or two-dimensional flows involving moving or stationary boundaries). An array of instructive examples illustrates the range of applications, extending from (simple) scalar equations to computational fluid dynamics. Background material from mathematical analysis and fluid dynamics is provided, making the book accessible to both researchers and graduate students of applied mathematics, science and engineering.
This book aims to bridge the gap between practising mathematicians and the practitioners of turbulence theory. It presents the mathematical theory of turbulence to engineers and physicists, and the physical theory of turbulence to mathematicians. The book is the result of many years of research by the authors to analyse turbulence using Sobolev spaces and functional analysis. In this way the authors have recovered parts of the conventional theory of turbulence, deriving rigorously from the Navier–Stokes equations what had been arrived at earlier by phenomenological arguments. The mathematical technicalities are kept to a minimum within the book, enabling the language to be at a level understood by a broad audience. Each chapter is accompanied by appendices giving full details of the mathematical proofs and subtleties. This unique presentation should ensure a volume of interest to mathematicians, engineers and physicists.
This book was first published in 2005. When an oceanic tidal wave that is primarily active on the water surface passes an ocean shelf or a region with a seamount, it is split into a less energetic surface wave and other internal modes with different wavelengths and propagation speeds. This cascading process, from the barotropic tides to the baroclinic components, leads to the transformation of tidal energy into turbulence and heat, an important process for the dynamics of the lower ocean. Baroclinic Tides demonstrates the analytical and numerical methods used to study the generation and evolution of baroclinic tides and, by comparison with experiments and observational data, shows how to distinguish and interpret internal waves. Strongly non-linear solitary internal waves, which are generated by internal tidal waves at the final stage of their evolution, are investigated in detail. This book is intended for researchers and graduate students of physical oceanography, geophysical fluid dynamics and hydroacoustics.