From the near-Earth solar wind to the intracluster medium of galaxy clusters, collisionless, high-beta, magnetized plasmas pervade our universe. Energy and momentum transport from large-scale fields and flows to small-scale motions of plasma particles is ubiquitous in these systems, but a full picture of the underlying physical mechanisms remains elusive. The transfer is often mediated by a turbulent cascade of Alfvénic fluctuations as well as a variety of kinetic instabilities; these processes tend to be multi-scale and/or multi-dimensional, which makes them difficult to study using spacecraft missions and numerical simulations alone. Meanwhile, existing laboratory devices struggle to produce the collisionless, high ion beta (
$\beta _i \gtrsim 1$), magnetized plasmas across the range of scales necessary to address these problems. As envisioned in recent community planning documents, it is therefore important to build a next generation laboratory facility to create a
$\beta _i \gtrsim 1$, collisionless, magnetized plasma in the laboratory for the first time. A working group has been formed and is actively defining the necessary technical requirements to move the facility towards a construction-ready state. Recent progress includes the development of target parameters and diagnostic requirements as well as the identification of a need for source-target device geometry. As the working group is already leading to new synergies across the community, we anticipate a broad community of users funded by a variety of federal agencies (including National Aeronautics and Space Administration, Department of Energy and National Science Foundation) to make copious use of the future facility.