All notions of mathematical logic, as measured e.g. by Principia mathematica, can be constructed from a basis which embraces variables and just two further primitives: the familiar notions of inclusion and abstraction. Inclusion will be expressed by the usual form of notation “(x⊂y)”, which may be read “x is included in y.” Abstraction will be expressed by the form of notation “x3 …” as with Peano, the blank being filled by any formula (statement or statement form); the whole may be read “the class of all objects x such that ….”
A system of logic based on these primitives will be presented in this paper. The system involves the familiar theory of class types, which, for metamathematical convenience, will be recorded in the system by use of distinctive styles of variables; thus the variables “x”, “y”, and “z”, also with subscripts when further variety is needed, will take individuals as values; the variables “x′”, “y′”, and “z′”, also with subscripts, will take classes of individuals as values; the variables “x″”, “y″”, and “z″”, also with subscripts, will take classes of classes of individuals as values; and so on. The metamathematical notion of term, covering all variables and also all expressions of abstraction, is now describable recursively thus: a variable is a term, and the number of accents which it bears is called its rank; and if terms of equal rank are put for “ζ” and “η” and a variable of rank n is put for “α” in “α3(ζ ⊂ η)”, the result is a term of rank n+1. A formula finally, is any result of putting terms of equal rank for “ζ” and “η” in “(ζ ⊂ η)”.