Hostname: page-component-7dd5485656-dk7s8 Total loading time: 0 Render date: 2025-10-25T06:41:41.974Z Has data issue: false hasContentIssue false

Integrating gray area feature points and static probability to enhance the performance of indoor dynamic visual simultaneous localization and mapping

Published online by Cambridge University Press:  23 October 2025

Huilin Liu
Affiliation:
School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, People’s Republic of China
Lunqi Yu*
Affiliation:
School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, People’s Republic of China
Shenghui Zhao
Affiliation:
Anhui Engineering Research Center of Intelligent Perception and Elderly Care, Chuzhou, 239000, People’s Republic of China
*
Corresponding author: Lunqi Yu; Email: 2023201221@aust.edu.cn

Abstract

In dynamic environments, moving objects pose a great challenge to the accuracy and robustness of visual simultaneous localization and mapping (VSLAM) systems. Traditional dynamic VSLAM methods rely on hand-designed feature frames, and these methods usually make it difficult to fully utilize feature information in dynamic regions. To this end, this paper proposes a SLAM system (GAF-SLAM) that combines gray area feature points, weighted static probabilities, and spatio-temporal constraints. This method realizes the efficient fusion of key point detection and target detection by introducing YOLO-Point to extract gray area feature points from dynamic regions. These feature points are located within the detection frame and have potentially static feature point properties. By combining the reprojection error and polar geometry constraints, potential static feature points are effectively screened out and the identification of these gray area feature points is further optimized. Subsequently, a novel static probabilistic computational framework is designed to assign weights to these gray area feature points and dynamically adjust their influence on the optimization results during the attitude estimation process. By combining static probability with temporal continuity and spatial smoothness constraints, the system achieves significantly improved localization accuracy and robustness in dynamic environments. Finally, the proposed method was evaluated on the TUM RGB-D dataset. The experimental results demonstrate that GAF-SLAM significantly improves pose estimation accuracy and exhibits strong robustness and stability in dynamic indoor environments.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Cho, H. M., Jo, H. and Kim, E., “SP-SLAM: Surfel-point simultaneous localization and mapping,” IEEE/ASME Trans. Mechatron. 27(5), 256825792022.10.1109/TMECH.2021.3118719CrossRefGoogle Scholar
Li, C., Zhang, X., Gao, H., Wang, R. and Y, “Fang “Bridging the gap between visual servoing and visual SLAM: A novel integrated interactive framework,” IEEE Trans. Autom. Sci. Eng. 19(3), 22452255 (2022).10.1109/TASE.2021.3067792CrossRefGoogle Scholar
Nie, F., Zhang, W., Wang, Y., Shi, Y. and Huang, Q., “A forest 3-D lidar SLAM system for rubber-tapping robot based on trunk center atlas,” IEEE/ASME Trans. Mechatron. 27(5), 26232633 (2022). doi: 10.1109/TMECH.2021.3120407.CrossRefGoogle Scholar
Cai, J., Yan, F., Shi, Y., Zhang, M. and Guo, L., “Autonomous robot navigation based on a hierarchical cognitive model,” Robotica 41(2), 690712 (2023). doi: 10.1017/S0263574722001539.CrossRefGoogle Scholar
Mulubika, C. and Schreve, K., “An approach towards mobile robot recovery due to vision sensor failure in vSLAM systems using ROS,” Robotica 1-23 (2025). doi: 10.1017/S0263574724002145. Published online.Google Scholar
Mur-Artal, R. and Tardós, J. D., “ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras,” IEEE Trans Robot. 33(5), 12551262 (2017). doi: 10.1109/TRO.2017.2705103.CrossRefGoogle Scholar
Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M. M. and Tardós, J. D., “ORB-SLAM3: An accurate open-source library for visual, visual–Inertial, and multimap SLAM,” IEEE Trans. Robot. 37(6), 18741890 (2021). doi: 10.1109/TRO.2021.3075644.CrossRefGoogle Scholar
Engel, J., Schöps, T. and Cremers, D., “LSD-SLAM: Large-Scale Direct Monocular SLAM,” In: Computer Vision – ECCV 2014, (2014) pp. 834849 10.1007/978-3-319-10604-5_53.10.1007/978-3-319-10605-2_54CrossRefGoogle Scholar
Engel, J., Koltun, V. and Cremers, D., “Direct sparse odometry,” IEEE Trans. Pattern Anal. 40(3), 611625 (2018). doi: 10.1109/TPAMI.2017.2658577.CrossRefGoogle ScholarPubMed
Yu, C., Liu, Z., Liu, X. J., Xie, F., Yang, Y., Wei, Q. and Fei, Q.. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018) pp. 11681174.Google Scholar
Bescos, B., Fácil, J. M., Civera, J. and Neira, J., “DynaSLAM: Tracking, mapping, and inpainting in dynamic scenes,” IEEE Robot. Autom. Lett. 3(4), 40764083 (2018). doi: 10.1109/LRA.2018.2860039.CrossRefGoogle Scholar
Xing, Z., Zhu, X. and Dong, D., “DE-SLAM: SLAM for highly dynamic environment,” J. Field Robot. 39, 528542 (2022).10.1002/rob.22062CrossRefGoogle Scholar
Backhaus, A., Luettel, T. and Wuensche, H. J., “YOLOPoint joint keypoint and object detection. arXiv:abs/2402.03989 (2024).10.1007/978-3-031-45382-3_10CrossRefGoogle Scholar
Davison, A. J., Reid, I. D., Molton, N. D. and Stasse, O., “MonoSLAM: Real-time single camera SLAM,” IEEE Trans. Pattern Anal. 29(6), 10521067 (2007). doi: 10.1109/TPAMI.2007.1049.CrossRefGoogle ScholarPubMed
Liu, X., Wen, S. and Zhang, H., “A real-time stereo visual-inertial SLAM system based on point-and-line features,” IEEE Trans. Veh. Technol. 72(5), 57475758 (2023). doi: 10.1109/TVT.2022.3233721.CrossRefGoogle Scholar
Liu, X., Wen, S., Zhao, J., Qiu, T. Z. and Zhang, H., “Edge-assisted multi-robot visual-inertial SLAM with efficient communication,” IEEE Trans. Autom. Sci. Eng. 22, 21862198 (2025). doi: 10.1109/TASE.2024.3376427.CrossRefGoogle Scholar
Zou, D. and Tan, P., “CoSLAM: Collaborative visual SLAM in dynamic environments,” IEEE Trans. Pattern Anal. 35(2), 354366 (2013). doi: 10.1109/TPAMI.2012.104.CrossRefGoogle ScholarPubMed
Wang, R., Wan, W., Wang, Y. and Di, K., “A new RGB-D SLAM method with moving object detection for dynamic indoor scenes,” Remote Sens. 11, 1143 (2019).10.3390/rs11101143CrossRefGoogle Scholar
Dai, W., Zhang, Y., Li, P., Fang, Z. and Scherer, S., “RGB-D SLAM in dynamic environments using point correlations,” IEEE Trans. Pattern Anal. 44(1), 373389 (2022). doi: 10.1109/TPAMI.2020.3010942.CrossRefGoogle ScholarPubMed
Song, B., Yuan, X., Ying, Z., Yang, B., Song, Y. and Zhou, F., “DGM-VINS: Visual–Inertial SLAM for complex dynamic environments with joint geometry feature extraction and multiple object tracking,” IEEE Trans. Instrum. Meas. 72, 111 (2023). doi: 10.1109/TIM.2023.3280533.Google Scholar
Hahsler, M., Piekenbrock, M. and Doran, D., “Dbscan: Fast density-based clustering with R,” J. Stat. Softw. 91(1), 130 (2019).10.18637/jss.v091.i01CrossRefGoogle Scholar
He, K., Gkioxari, G., Dollár, P. and Girshick, R., “Mask R-CNN,” IEEE Trans. Pattern Anal. 42(2), 386397 (2020). doi: 10.1109/TPAMI.2018.2844175.CrossRefGoogle ScholarPubMed
Yang, X., Yuan, Z., Zhu, D., Chi, C., Li, K. and Liao, C., “Robust and efficient RGB-D SLAM in dynamic environments,” IEEE Trans. Multimedia 23, 42084219 (2021). doi: 10.1109/TMM.2020.3038323.CrossRefGoogle Scholar
Ren, S., He, K., Girshick, R. and Sun, J., “Faster R-CNN: Towards real-time object detection with region proposal networks,” IEEE Trans. Pattern Anal. 39(6), 11371149 (2017). doi: 10.1109/TPAMI.2016.2577031.CrossRefGoogle ScholarPubMed
Yu, C. M., Chen, K. C., Chang, C. T. and Ti, Y. W., “SegNet: A network for detecting deepfake facial videos,” Multimedia Syst. 28, 793814 (2022).10.1007/s00530-021-00876-5CrossRefGoogle Scholar
Wen, S., Li, X., Liu, X., Li, J., Tao, S., Long, Y. and Qiu, T., “Dynamic SLAM: A visual SLAM in outdoor dynamic scenes,” IEEE Trans. Instrum. Meas. 72, 111 (2023). doi: 10.1109/TIM.2023.3317378.Google Scholar
He, J., Li, M., Wang, Y. and Wang, H., “OVD-SLAM: An online visual SLAM for dynamic environments,” IEEE Sens. J. 23(12), 1321013219 (2023).10.1109/JSEN.2023.3270534CrossRefGoogle Scholar
Wu, W., Guo, L., Gao, H., You, Z., Liu, Y. and Chen, Z., “YOLO-SLAM: A semantic SLAM system towards dynamic environment with geometric constraint,” Neural Comput. Appl. 34, 60116026 (2022).10.1007/s00521-021-06764-3CrossRefGoogle Scholar
Min, F., Wu, Z., Li, D., Wang, G. and Liu, N., “COEB-SLAM: A robust VSLAM in dynamic environments combined object detection, epipolar geometry constraint, and blur filtering,” IEEE Sens J. 23(21), 2627926291 (2023).10.1109/JSEN.2023.3317056CrossRefGoogle Scholar
Cheng, S., Sun, C., Zhang, S. and Zhang, D., “SG-SLAM: A real-time RGB-D visual SLAM toward dynamic scenes with semantic and geometric information,” IEEE Trans. Instrum. Meas. 72, 112 (2023). doi: 10.1109/TIM.2022.3228006.CrossRefGoogle Scholar
Sun, Q., Liu, W., Zou, J., Xu, Z. and Li, Y., “GGC-SLAM: A VSLAM system based on predicted static probability of feature points in dynamic environments,” SIViP 18, 70537064 (2024).10.1007/s11760-024-03375-yCrossRefGoogle Scholar
Islam, Q. U., Ibrahim, H., Chin, P. K., Lim, K., Abdullah, M. Z. and Khozaei, F., “Advancing real-world visual SLAM: Integrating adaptive segmentation with dynamic object detection for enhanced environmental perception,” Expert Syst Appl 255(Part A), 124474 (2024).10.1016/j.eswa.2024.124474CrossRefGoogle Scholar
Fu, F., Yang, J., Ma, J. and Zhang, J., “Dynamic visual SLAM based on probability screening and weighting for deep features,” Measurement 236, 115127 (2024).10.1016/j.measurement.2024.115127CrossRefGoogle Scholar
Wu, S., Zhang, X., Zhang, S., Song, Z., Wang, R. and Yuan, J., “MPOC-SLAM: An RGB-D SLAM system with motion probability and object category in high dynamic environments,” IEEE/ASME Transactions on Mechatronics (2024). doi: 10.1109/TMECH.2024.3410508.CrossRefGoogle Scholar
DeTone, D., Malisiewicz, T. and Rabinovich, A.. Superpoint: Self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2018) pp. 224236.Google Scholar
Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C. L., “Microsoft COCO: Common Objects in Context,” In: Computer Vision – ECCV (Springer, Zurich, 2014) pp. 740755.Google Scholar
Geiger, A., Lenz, P., Stiller, C. and Urtasun, R., “Vision meets robotics: The KITTI dataset,” Int. J. Robot. Res. 32(11), 12311237 (2013).10.1177/0278364913491297CrossRefGoogle Scholar
Shi, X., Li, D., Zhao, P., Tian, Q., Tian, Y., Long, Q., Zhu, C., Song, J., Qiao, F., Song, L. and Guo, Y.. Are We Ready for Service Robots? The OpenLORIS-Scene Datasets for Lifelong SLAM. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France (2020) pp. 31393145.Google Scholar
Munoz-Salinas, R. and Medina-Carnicer, R., “UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers,” Pattern Recogn. 101, 107193 (2020).10.1016/j.patcog.2019.107193CrossRefGoogle Scholar
Baker, S. and Matthews, I., “Lucas-kanade 20 Years on: A unifying framework,” Int. J. Comput. Vis. 56, 221255 (2004).10.1023/B:VISI.0000011205.11775.fdCrossRefGoogle Scholar
Sturm, J., Engelhard, N., Endres, F., Burgard, W. and Cremers, D.. A benchmark for the evaluation of RGB-D SLAM systems. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst (2012) pp. 573580.Google Scholar
Palazzolo, E., Behley, J., Lottes, P., Giguere, P. and Stachniss, C.. ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D Cameras Exploiting Residuals. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019) pp. 78557862.Google Scholar