Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-01T18:21:40.064Z Has data issue: false hasContentIssue false

Part IV - Optogenetics in Learning, Neuropsychiatric Diseases, and Behavior

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 239 - 324
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adamantidis, A. R., Tsai, H. C., Boutrel, B., Zhang, F., Stuber, G. D., Budygin, E. A., Tourino, C., Bonci, A., Deisseroth, K. & De Lecea, L. 2011. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci, 31, 10829–35.CrossRefGoogle ScholarPubMed
Albin, R. L., Young, A. B. & Penney, J. B. 1989. The functional anatomy of basal ganglia disorders. Trends Neurosci, 12, 366–75.CrossRefGoogle ScholarPubMed
Atkins, A. L., Mashhoon, Y. & Kantak, K. M. 2008. Hippocampal regulation of contextual cue-induced reinstatement of cocaine-seeking behavior. Pharmacol Biochem Behav, 90, 481–91.CrossRefGoogle ScholarPubMed
Berridge, K. C. 2007. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl), 191, 391431.CrossRefGoogle ScholarPubMed
Berridge, K. C. & Robinson, T. E. 1998. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev, 28, 309–69.CrossRefGoogle ScholarPubMed
Bremner, J. D., Krystal, J. H., Southwick, S. M. & Charney, D. S. 1996. Noradrenergic mechanisms in stress and anxiety: II. Clinical studies. Synapse, 23, 3951.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Brischoux, F., Chakraborty, S., Brierley, D. I. & Ungless, M. A. 2009. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A, 106, 4894–9.CrossRefGoogle ScholarPubMed
Britt, J. P., Benaliouad, F., Mcdevitt, R. A., Stuber, G. D., Wise, R. A. & Bonci, A. 2012. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron, 76, 790803.CrossRefGoogle ScholarPubMed
Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. 2010. Distinct tonic and phasic anticipatory activity in lateral habenula and dopamine neurons. Neuron, 67, 144–55.CrossRefGoogle ScholarPubMed
Brown, T. E., Lee, B. R., Mu, P., Ferguson, D., Dietz, D., Ohnishi, Y. N., Lin, Y., Suska, A., Ishikawa, M., Huang, Y. H., Shen, H., Kalivas, P. W., Sorg, B. A., Zukin, R. S., Nestler, E. J., Dong, Y. & Schluter, O. M. 2011. A silent synapse-based mechanism for cocaine-induced locomotor sensitization. J Neurosci, 31, 8163–74.CrossRefGoogle ScholarPubMed
Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. 2012. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature, 482, 85–8.CrossRefGoogle ScholarPubMed
Cornwall, J., Cooper, J. D. & Phillipson, O. T. 1990. Projections to the rostral reticular thalamic nucleus in the rat. Exp Brain Res, 80, 157–71.CrossRefGoogle Scholar
Danjo, T., Yoshimi, K., Funabiki, K., Yawata, S. & Nakanishi, S. 2014. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens. Proc Natl Acad Sci U S A, 111, 6455–60.CrossRefGoogle ScholarPubMed
Di Ciano, P. & Everitt, B. J. 2004. Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci, 24, 7167–73.CrossRefGoogle ScholarPubMed
Everitt, B. J. & Robbins, T. W. 2005. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci, 8, 1481–9.CrossRefGoogle ScholarPubMed
Ferguson, S. M., Eskenazi, D., Ishikawa, M., Wanat, M. J., Phillips, P. E., Dong, Y., Roth, B. L. & Neumaier, J. F. 2011. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci, 14, 22–4.CrossRefGoogle ScholarPubMed
Fernando, A. B., Economidou, D., Theobald, D. E., Zou, M. F., Newman, A. H., Spoelder, M., Caprioli, D., Moreno, M., Hipolito, L., Aspinall, A. T., Robbins, T. W. & Dalley, J. W. 2012. Modulation of high impulsivity and attentional performance in rats by selective direct and indirect dopaminergic and noradrenergic receptor agonists. Psychopharmacology (Berl), 219, 341–52.CrossRefGoogle ScholarPubMed
Fields, H. L., Hjelmstad, G. O., Margolis, E. B. & Nicola, S. M. 2007. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci, 30, 289316.CrossRefGoogle ScholarPubMed
Gerfen, C. R. 1992. The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci, 15, 285320.CrossRefGoogle ScholarPubMed
Hikida, T., Kimura, K., Wada, N., Funabiki, K. & Nakanishi, S. 2010. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66, 896907.CrossRefGoogle ScholarPubMed
Horvitz, J. C. 2000. Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience, 96, 651–6.CrossRefGoogle ScholarPubMed
Ilango, A., Kesner, A. J., Broker, C. J., Wang, D. V. & Ikemoto, S. 2014a. Phasic excitation of ventral tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: parametric and reinforcement-schedule analyses. Front Behav Neurosci, 8, 155.CrossRefGoogle ScholarPubMed
Ilango, A., Kesner, A. J., Keller, K. L., Stuber, G. D., Bonci, A. & Ikemoto, S. 2014b. Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J Neurosci, 34, 817–22.CrossRefGoogle ScholarPubMed
Jhou, T. C., Fields, H. L., Baxter, M. G., Saper, C. B. & Holland, P. C. 2009. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron, 61, 786800.CrossRefGoogle ScholarPubMed
Johnson, S. W. & North, R. A. 1992. Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol, 450, 455–68.CrossRefGoogle ScholarPubMed
Kalivas, P. W. & Volkow, N. D. 2005. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry, 162, 1403–13.CrossRefGoogle ScholarPubMed
Kaufling, J., Veinante, P., Pawlowski, S. A., FREUND-MERCIER, M. J. & Barrot, M. 2009. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol, 513, 597621.CrossRefGoogle Scholar
Kim, K. M., Baratta, M. V., Yang, A., Lee, D., Boyden, E. S. & Fiorillo, C. D. 2012. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS One, 7, e33612.CrossRefGoogle ScholarPubMed
Kourrich, S., Rothwell, P. E., Klug, J. R. & Thomas, M. J. 2007. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J Neurosci, 27, 7921–8.CrossRefGoogle ScholarPubMed
Koya, E., Cruz, F. C., Ator, R., Golden, S. A., Hoffman, A. F., Lupica, C. R. & Hope, B. T. 2012. Silent synapses in selectively activated nucleus accumbens neurons following cocaine sensitization. Nat Neurosci, 15, 1556–62.CrossRefGoogle ScholarPubMed
Kravitz, A. V., Tye, L. D. & Kreitzer, A. C. 2012. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci, 15, 816–8.CrossRefGoogle ScholarPubMed
Lalumiere, R. T., Smith, K. C. & Kalivas, P. W. 2012. Neural circuit competition in cocaine-seeking: roles of the infralimbic cortex and nucleus accumbens shell. Eur J Neurosci, 35, 614–22.CrossRefGoogle ScholarPubMed
Lammel, S., Lim, B. K., Ran, C., Huang, K. W., Betley, M. J., Tye, K. M., Deisseroth, K. & Malenka, R. C. 2012. Input-specific control of reward and aversion in the ventral tegmental area. Nature, 491, 212–7.CrossRefGoogle ScholarPubMed
Lee, B. R., Ma, Y. Y., Huang, Y. H., Wang, X., Otaka, M., Ishikawa, M., Neumann, P. A., Graziane, N. M., Brown, T. E., Suska, A., Guo, C., Lobo, M. K., Sesack, S. R., Wolf, M. E., Nestler, E. J., Shaham, Y., Schluter, O. M. & Dong, Y. 2013. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci, 16, 1644–51.CrossRefGoogle ScholarPubMed
Lima, S. Q., Hromadka, T., Znamenskiy, P. & Zador, A. M. 2009. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One, 4, e6099.CrossRefGoogle ScholarPubMed
Lobo, M. K., Covington, H. E. 3RD, Chaudhury, D., Friedman, A. K., Sun, H., DAMEZ-WERNO, D., Dietz, D. M., Zaman, S., Koo, J. W., Kennedy, P. J., Mouzon, E., Mogri, M., Neve, R. L., Deisseroth, K., Han, M. H. & Nestler, E. J. 2010. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science, 330, 385–90.CrossRefGoogle ScholarPubMed
Lobo, M. K. & Nestler, E. J. 2011. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat, 5, 41.CrossRefGoogle ScholarPubMed
Lodge, D. J. & Grace, A. A. 2006. The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proc Natl Acad Sci U S A, 103, 5167–72.CrossRefGoogle ScholarPubMed
Lu, X. Y., Ghasemzadeh, M. B. & Kalivas, P. W. 1998. Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience, 82, 767–80.Google ScholarPubMed
Ma, S. & Morilak, D. A. 2005. Norepinephrine release in medial amygdala facilitates activation of the hypothalamic-pituitary-adrenal axis in response to acute immobilisation stress. J Neuroendocrinol, 17, 22–8.CrossRefGoogle ScholarPubMed
Ma, Y. Y., Lee, B. R., Wang, X., Guo, C., Liu, L., Cui, R., Lan, Y., BALCITA-PEDICINO, J. J., Wolf, M. E., Sesack, S. R., Shaham, Y., Schluter, O. M., Huang, Y. H. & Dong, Y. 2014. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron, 83, 1453–67.CrossRefGoogle ScholarPubMed
Maeda, H. & Mogenson, G. J. 1982. Effects of peripheral stimulation on the activity of neurons in the ventral tegmental area, substantia nigra and midbrain reticular formation of rats. Brain Res Bull, 8, 714.CrossRefGoogle ScholarPubMed
Mantz, J., Thierry, A. M. & Glowinski, J. 1989. Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Res, 476, 377–81.CrossRefGoogle ScholarPubMed
Matsumoto, M. & Hikosaka, O. 2007. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447, 1111–5.CrossRefGoogle ScholarPubMed
Matsumoto, M. & Hikosaka, O. 2009. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459, 837–41.CrossRefGoogle ScholarPubMed
Mcfarland, K., Lapish, C. C. & Kalivas, P. W. 2003. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci, 23, 3531–7.CrossRefGoogle ScholarPubMed
Mogenson, G. J., Jones, D. L. & Yim, C. Y. 1980. From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol, 14, 6997.CrossRefGoogle ScholarPubMed
Pascoli, V., Terrier, J., Espallergues, J., Valjent, E., O’CONNOR, E. C. & Luscher, C. 2014. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature, 509, 459–64.CrossRefGoogle ScholarPubMed
Peters, J., Vallone, J., Laurendi, K. & Kalivas, P. W. 2008. Opposing roles for the ventral prefrontal cortex and the basolateral amygdala on the spontaneous recovery of cocaine-seeking in rats. Psychopharmacology (Berl), 197, 319–26.CrossRefGoogle ScholarPubMed
Redgrave, P., Prescott, T. J. & Gurney, K. 1999. Is the short-latency dopamine response too short to signal reward error? Trends Neurosci, 22, 146–51.CrossRefGoogle ScholarPubMed
Rescorla, R. A. & Wagner, A.R. 1972. A Theory of Pavlovian Condition: Variations in the Effectiveness of Reinforcement and Nonreinforcement. New York, Appleton-Century-Crofts.Google Scholar
Roitman, M. F., Stuber, G. D., Phillips, P. E., Wightman, R. M. & Carelli, R. M. 2004. Dopamine operates as a subsecond modulator of food seeking. J Neurosci, 24, 1265–71.CrossRefGoogle ScholarPubMed
Russo, S. J., Dietz, D. M., Dumitriu, D., Morrison, J. H., Malenka, R. C. & Nestler, E. J. 2010. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci, 33, 267–76.CrossRefGoogle ScholarPubMed
Schultz, W. 1998. Predictive reward signal of dopamine neurons. J Neurophysiol, 80, 127.CrossRefGoogle ScholarPubMed
Schultz, W., Apicella, P. & Ljungberg, T. 1993. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci, 13, 900–13.CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P. & Montague, P. R. 1997. A neural substrate of prediction and reward. Science, 275, 1593–9.CrossRefGoogle ScholarPubMed
Schultz, W. & Romo, R. 1987. Responses of nigrostriatal dopamine neurons to high-intensity somatosensory stimulation in the anesthetized monkey. J Neurophysiol, 57, 201–17.CrossRefGoogle ScholarPubMed
Setlow, B., Gallagher, M. & Holland, P. C. 2002. The basolateral complex of the amygdala is necessary for acquisition but not expression of CS motivational value in appetitive Pavlovian second-order conditioning. Eur J Neurosci, 15, 1841–53.CrossRefGoogle Scholar
Song, S. S., Kang, B. J., Wen, L., Lee, H. J., Sim, H. R., Kim, T. H., Yoon, S., Yoon, B. J., Augustine, G. J. & Baik, J. H. 2014. Optogenetics reveals a role for accumbal medium spiny neurons expressing dopamine D2 receptors in cocaine-induced behavioral sensitization. Front Behav Neurosci, 8, 336.CrossRefGoogle ScholarPubMed
Stamatakis, A. M. & Stuber, G. D. 2012. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat Neurosci, 15, 1105–7.CrossRefGoogle Scholar
Stefanik, M. T. & Kalivas, P. W. 2013. Optogenetic dissection of basolateral amygdala projections during cue-induced reinstatement of cocaine seeking. Front Behav Neurosci, 7, 213.CrossRefGoogle ScholarPubMed
Stefanik, M. T., Kupchik, Y. M., Brown, R. M. & Kalivas, P. W. 2013a. Optogenetic evidence that pallidal projections, not nigral projections, from the nucleus accumbens core are necessary for reinstating cocaine seeking. J Neurosci, 33, 13654–62.CrossRefGoogle Scholar
Stefanik, M. T., Kupchik, Y. M. & Kalivas, P. W. 2016. Optogenetic inhibition of cortical afferents in the nucleus accumbens simultaneously prevents cue-induced transient synaptic potentiation and cocaine-seeking behavior. Brain Struct Funct, 221, 1681–9.CrossRefGoogle ScholarPubMed
Stefanik, M. T., Moussawi, K., Kupchik, Y. M., Smith, K. C., Miller, R. L., Huff, M. L., Deisseroth, K., Kalivas, P. W. & Lalumiere, R. T. 2013b. Optogenetic inhibition of cocaine seeking in rats. Addict Biol, 18, 50–3.CrossRefGoogle ScholarPubMed
Steinberg, E. E. & Janak, P. H. 2013. Establishing causality for dopamine in neural function and behavior with optogenetics. Brain Res, 1511, 4664.CrossRefGoogle ScholarPubMed
Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K. & Janak, P. H. 2013. A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci, 16, 966–73.CrossRefGoogle ScholarPubMed
Stuber, G. D., Hnasko, T. S., Britt, J. P., Edwards, R. H. & Bonci, A. 2010. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci, 30, 8229–33.CrossRefGoogle Scholar
Stuber, G. D., Sparta, D. R., Stamatakis, A. M., Van Leeuwen, W. A., Hardjoprajitno, J. E., Cho, S., Tye, K. M., Kempadoo, K. A., Zhang, F., Deisseroth, K. & Bonci, A. 2011. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature, 475, 377–80.CrossRefGoogle ScholarPubMed
Sun, W. & Rebec, G. V. 2003. Lidocaine inactivation of ventral subiculum attenuates cocaine-seeking behavior in rats. J Neurosci, 23, 10258–64.CrossRefGoogle ScholarPubMed
Suska, A., Lee, B. R., Huang, Y. H., Dong, Y. & Schluter, O. M. 2013. Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine. Proc Natl Acad Sci U S A, 110, 713–8.CrossRefGoogle ScholarPubMed
Sutton, R. S. 1988. Learning to predict by the methods of temporal differences. Machine Learning, 3, 944.CrossRefGoogle Scholar
Sutton, R. S. & Barto, A. G. 1998. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.Google Scholar
Tan, K. R., Yvon, C., Turiault, M., Mirzabekov, J. J., Doehner, J., Labouebe, G., Deisseroth, K., Tye, K. M. & Luscher, C. 2012. GABA neurons of the VTA drive conditioned place aversion. Neuron, 73, 1173–83.CrossRefGoogle ScholarPubMed
Tanimoto, H., Heisenberg, M. & Gerber, B. 2004. Experimental psychology: event timing turns punishment to reward. Nature, 430, 983.CrossRefGoogle ScholarPubMed
Tsai, H. C., Zhang, F., Adamantidis, A., Stuber, G. D., Bonci, A., De Lecea, L. & Deisseroth, K. 2009. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science, 324, 1080–4.CrossRefGoogle ScholarPubMed
Ungless, M. A., Argilli, E. & Bonci, A. 2010. Effects of stress and aversion on dopamine neurons: implications for addiction. Neurosci Biobehav Rev, 35, 151–6.CrossRefGoogle ScholarPubMed
Ungless, M. A. & Grace, A. A. 2012. Are you or aren’t you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci, 35, 422–30.CrossRefGoogle ScholarPubMed
Van Zessen, R., Phillips, J. L., Budygin, E. A. & Stuber, G. D. 2012. Activation of VTA GABA neurons disrupts reward consumption. Neuron, 73, 1184–94.Google ScholarPubMed
Wise, R. A. 2004. Dopamine, learning and motivation. Nat Rev Neurosci, 5, 483–94.CrossRefGoogle ScholarPubMed

References

Arencibia-Albite, F., Paladini, C., Williams, J. T. et al., (2007) Noradrenergic modulation of the hyperpolarization-activated cation current (Ih) in dopamine neurons of the ventral tegmental area. Neuroscience, 149, 303314.CrossRefGoogle ScholarPubMed
Bagot, R. C., Parise, E. M., Pena, C. J. et al., (2014) Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun, 6:7062.CrossRefGoogle Scholar
Berton, O., Mcclung, C. A., Dileone, R. J. et al., (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 311, 864868.CrossRefGoogle ScholarPubMed
Berton, O. and Nestler, E. J. (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci, 7, 137151.CrossRefGoogle ScholarPubMed
Cao, J.-L., Covington, H. E., Friedman, A. K. et al., (2010) Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J Neurosci, 30, 1645316458.CrossRefGoogle ScholarPubMed
Carlezon, W. A. and Chartoff, E. H. (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc, 2, 29872995.CrossRefGoogle Scholar
Chaudhury, D., Walsh, J. J., Friedman, A. K. et al., (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature, 493, 532536.CrossRefGoogle ScholarPubMed
Christoffel, D. J., Golden, S. A., Dumitriu, D. et al., (2011) IkB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J Neurosci, 31, 314321.CrossRefGoogle Scholar
Christoffel, D. J., Golden, S. A., Walsh, J. J. et al., (2015) Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress. Nat Neurosci, 18, 962964.CrossRefGoogle ScholarPubMed
Coppen, A. (1967) The biochemistry of affective disorders. Br J Psychiatry, 113, 12371264.CrossRefGoogle ScholarPubMed
Cunningham, C. L., Gremel, C. M. and Groblewski, P. A. (2006) Drug-induced conditioned place preference and aversion in mice. Nat Protoc, 1, 16621670.CrossRefGoogle ScholarPubMed
Di Chiara, G. and Imperato, A. (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther, 244, 10671080.Google ScholarPubMed
Ferrari, A. J., Charlson, F. J., Norman, R. E. et al., (2013) Burden of depressive disorders by country, sex, age, and year: findings from the Global Burden of Disease Study 2010. PLoS Med, 10, e1001547.CrossRefGoogle ScholarPubMed
Ford, C. P., Mark, G. P. and Williams, J. T. (2006) Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci, 26, 27882797.CrossRefGoogle ScholarPubMed
Friedman, A. K., Walsh, J. J., Juarez, B. et al., (2014) Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science, 344, 313319.CrossRefGoogle ScholarPubMed
Golden, S. A., Covington, H. E., Berton, O. et al., (2011) A standardized protocol for repeated social defeat stress in mice. Nat. Protoc, 6, 11831191.CrossRefGoogle ScholarPubMed
Gong, S., Doughty, M., Harbaugh, C. R. et al., (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci, 27, 98179823.CrossRefGoogle ScholarPubMed
Grace, A. A. and Bunney, B. S. (1984a) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci, 4, 28772890.CrossRefGoogle ScholarPubMed
Grace, A. A. and Bunney, B. S. (1984b) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci, 4, 28662876.CrossRefGoogle ScholarPubMed
Grace, A. A., Floresco, S. B., Goto, Y. et al., (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci, 30, 220227.CrossRefGoogle ScholarPubMed
Gysling, K. and Wang, R. Y. (1983) Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res, 277, 119127.CrossRefGoogle ScholarPubMed
Han, M. H. and Friedman, A. K. (2011) Virogenetic and optogenetic mechanisms to define potential therapeutic targets in psychiatric disorders. Neuropharmacology, 62, 89100.CrossRefGoogle ScholarPubMed
Hill, M. N., Hellemans, K. G., Verma, P. et al., (2013) Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev, 36, 20852117.CrossRefGoogle Scholar
Hyman, S. E. (2007) How mice cope with stressful social situations. Cell, 131, 232234.CrossRefGoogle ScholarPubMed
Hyman, S. E., Malenka, R. C. and Nestler, E. J. (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci, 29, 565598.CrossRefGoogle ScholarPubMed
Koo, J. W., Mazei-Robison, M. S., Chaudhury, D. et al., (2012) BDNF is a negative modulator of morphine action. Science, 338, 124128.CrossRefGoogle ScholarPubMed
Koob, G. F., Ahmed, S. H., Boutrel, B. et al., (2004) Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev, 27, 739749.CrossRefGoogle ScholarPubMed
Krishnan, V., Han, M. H., Graham, D. L. et al., (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell, 131, 391404.CrossRefGoogle ScholarPubMed
Krishnan, V. and Nestler, E. J. (2008) The molecular neurobiology of depression. Nature, 455, 894902.CrossRefGoogle ScholarPubMed
Lammel, S., Hetzel, A., Hackel, O. et al., (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron, 57, 760773.CrossRefGoogle ScholarPubMed
Lammel, S., Ion, D. I., Roeper, J. et al., (2011) Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron, 70, 855862.CrossRefGoogle ScholarPubMed
Lemos, J. C., Wanat, M. J., Smith, J. S. et al., (2012) Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature, 490, 402406.CrossRefGoogle ScholarPubMed
Lobo, M. K., Covington, H. E. 3rd, Chaudhury, D. et al., (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science, 330, 385390.CrossRefGoogle ScholarPubMed
Lobo, M. K., Nestler, E. J. and Covington, H. E. (2012) Potential utility of optogenetics in the study of depression. Biol Psychiatry, 71, 10681074.CrossRefGoogle Scholar
Margolis, E. B., Mitchell, J. M., Ishikawa, J. et al., (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci, 28, 89088913.CrossRefGoogle ScholarPubMed
Matsuda, N., Lu, H., Fukata, Y. et al., (2009) Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J Neurosci, 29, 1418514198.CrossRefGoogle ScholarPubMed
Nestler, E. J., Gould, E. and Manji, H. (2002) Preclinical models: status of basic research in depression. Biol Psychiatry, 52, 503528.CrossRefGoogle ScholarPubMed
Nestler, E. J. and Hyman, S. E. (2010) Animal models of neuropsychiatric disorders. Nat Neurosci, 13, 11611169.CrossRefGoogle ScholarPubMed
Neuhoff, H., Neu, A., Liss, B. et al., (2002) I(H) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci, 22, 12901302.CrossRefGoogle Scholar
Neve, R. L. and Lim, F. (2013) Generation of high-titer defective HSV-1 vectors. Curr Protoc Neurosci, Chapter 4, Unit 4.13.CrossRefGoogle Scholar
Olmstead, M. C. and Franklin, K. B. (1997) The development of a conditioned place preference to morphine: effects of lesions of various CNS sites. Behav Neurosci, 111, 13131323.CrossRefGoogle ScholarPubMed
Park, H. and Poo, M. M. (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci, 14, 723.CrossRefGoogle ScholarPubMed
Robinson, M. J. and Berridge, K. C. (2008) Instant transformation of learned repulsion into motivational “wanting”. Curr Biol, 23, 282289.CrossRefGoogle Scholar
Robinson, T. E. and Berridge, K. C. (2003) Addiction. Annu Rev Psychol, 54, 2553.CrossRefGoogle ScholarPubMed
Russo, S. J. and Nestler, E. J. (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci, 14, 609625.CrossRefGoogle ScholarPubMed
Schildkraut, J. J. (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry, 122, 509522.CrossRefGoogle ScholarPubMed
Schultz, W. (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct, 6, 24.CrossRefGoogle ScholarPubMed
Schultz, W. (2015) Neuronal reward and decision signals: from theories to data. Physiol Rev, 95, 853951.CrossRefGoogle ScholarPubMed
Shirayama, Y. and Chaki, S. (2006) Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol, 4, 277291.CrossRefGoogle ScholarPubMed
Tsai, H. C., Zhang, F., Adamantidis, A. et al., (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science, 324, 10801084.CrossRefGoogle ScholarPubMed
Tye, K. M., Mirzabekov, J. J., Warden, M. R. et al., (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature, 493, 537541.CrossRefGoogle ScholarPubMed
Vialou, V., Robison, A. J., Laplant, Q. C. et al., (2010) [Delta]FosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat Neurosci, 13, 745752.CrossRefGoogle Scholar
Volkow, N. D. and Koob, G. (2015) Brain disease model of addiction: why is it so controversial? Lancet Psychiatry, 2, 677679.CrossRefGoogle ScholarPubMed
Volkow, N. D. and Morales, M. (2015) The brain on drugs: from reward to addiction. Cell, 162, 712725.CrossRefGoogle ScholarPubMed
Walker, D. M., Cates, H. M., Heller, E. A. et al., (2015) Regulation of chromatin states by drugs of abuse. Curr Opin Neurobiol, 30, 112121.CrossRefGoogle ScholarPubMed
Walsh, J. J., Friedman, A. K., Sun, H. et al., (2014) Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat Neurosci, 17, 2729.CrossRefGoogle ScholarPubMed
Walsh, J. J. and Han, M. H. (2014) The heterogeneity of ventral tegmental area neurons: projection functions in a mood-related context. Neuroscience, 282c, 101108.CrossRefGoogle Scholar
Wanat, M. J., Bonci, A. and Phillips, P. E. (2013) CRF acts in the midbrain to attenuate accumbens dopamine release to rewards but not their predictors. Nat Neurosci, 16, 383385.CrossRefGoogle Scholar
Wise, R. A. and Rompre, P. P. (1989) Brain dopamine and reward. Annu Rev Psychol, 40, 191225.CrossRefGoogle ScholarPubMed

References

Adams, CD. 1982. Variations in the sensitivity of instrumental responding to reinforcer devaluation. Quart J Exp Psychol B 34: 7798.CrossRefGoogle Scholar
Aquili, L, Liu, AW, Shindou, M, Shindou, T, Wickens, JR. 2014. Behavioral flexibility is increased by optogenetic inhibition of neurons in the nucleus accumbens shell during specific time segments. Learn Mem 21: 223231.CrossRefGoogle ScholarPubMed
Aravanis, AM, Wang, LP, Zhang, F, Meltzer, LA, Mogri, MZ, Schneider, MB, Deisseroth, K. 2007. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4: S143156.CrossRefGoogle ScholarPubMed
Balleine, BW, Dickinson, A. 1998. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37: 407419.CrossRefGoogle ScholarPubMed
Barker, JM, Taylor, JR, Chandler, LJ. 2014. A unifying model of the role of the infralimbic cortex in extinction and habits. Learn Mem 21: 441448.CrossRefGoogle ScholarPubMed
Bernstein, JG, Boyden, ES. 2011. Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 15: 592600.CrossRefGoogle ScholarPubMed
Berridge, KC. 2001. Reward learning: Reinforcement, incentives, and expectations. In The Psychology of Learning and Motivation (ed. Medin, DL), pp. 223278. Academic Press, New York.Google Scholar
Berridge, KC. 2004. Motivation concepts in behavioral neuroscience. Physiol Behav 81: 179209.CrossRefGoogle ScholarPubMed
Berridge, KC, Robinson, TE. 1998. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28: 309369.CrossRefGoogle ScholarPubMed
Butler, WN, Smith, KS, Taube, JS. 2015. Shifting the neural compass: reversible optical disruption of the head direction signal in vivo. Society for Neuroscience Abstracts 444.08.Google Scholar
Chang, SE, Todd, TP, Bucci, DJ, Smith, KS. 2015. Chemogenetic manipulation of ventral pallidal neurons impairs acquisition of sign-tracking in rats. Eur J Neurosci 42: 31053116.CrossRefGoogle ScholarPubMed
Chang, SE, Wheeler, DS, Holland, PC. 2012. Roles of nucleus accumbens and basolateral amygdala in autoshaped lever pressing. Neurobiol Learn Mem 97: 441451.CrossRefGoogle ScholarPubMed
Chuong, AS, Miri, ML, Busskamp, V, Matthews, GA, Acker, LC, Sorensen, AT, Young, A, Klapoetke, NC, Henninger, MA, Kodandaramaiah, SB et al., 2014. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17: 11231129.CrossRefGoogle ScholarPubMed
Coutureau, E, Killcross, S. 2003. Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behav Brain Res 146: 167174.CrossRefGoogle ScholarPubMed
Crego, AC, Marchuk, AG, Smith, KS. 2015. Investigating the role of striatum in habits with optogenetics in a plus maze paradigm. Society for Neuroscience Abstracts DP09.05/DP05.Google Scholar
Day, JJ, Carelli, RM. 2007. The nucleus accumbens and Pavlovian reward learning. Neuroscientist 13: 148159.CrossRefGoogle ScholarPubMed
Day, JJ, Roitman, MF, Wightman, RM, Carelli, RM. 2007. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10: 10201028.CrossRefGoogle ScholarPubMed
Deng, W, Goldys, EM, Farnham, MM, Pilowsky, PM. 2014. Optogenetics, the intersection between physics and neuroscience: light stimulation of neurons in physiological conditions. Am J Physiol Regul Integr Comp Physiol 307: R1292R1302.CrossRefGoogle ScholarPubMed
Dickinson, A. 1985. Actions and habits: the development of behavioral autonomy. Philos Trans R Soc Lond B Biol Sci 308: 6778.Google Scholar
Fenno, L, Yizhar, O, Deisseroth, K. 2011. The development and application of optogenetics. Annu Rev Neurosci 34: 389412.CrossRefGoogle ScholarPubMed
Ferster, CB, Skinner, BF. 1957. Schedules of Reinforcement. Appleton-Century-Crofts, New York.CrossRefGoogle ScholarPubMed
Flagel, SB, Clark, JJ, Robinson, TE, Mayo, L, Czuj, A, Willuhn, I, Akers, CA, Clinton, SM, Phillips, PE, Akil, H. 2010. A selective role for dopamine in stimulus–reward learning. Nature 469: 5357.CrossRefGoogle ScholarPubMed
Graybiel, AM. 2008. Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31: 359387.CrossRefGoogle ScholarPubMed
Gremel, CM, Costa, RM. 2013. Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun 4: 2264.CrossRefGoogle ScholarPubMed
Han, X. 2012. In vivo application of optogenetics for neural circuit analysis. ACS Chem Neurosci 3: 577584.CrossRefGoogle ScholarPubMed
Hitchcott, PK, Quinn, JJ, Taylor, JR. 2007. Bidirectional modulation of goal-directed actions by prefrontal cortical dopamine. Cereb Cortex 17: 28202827.CrossRefGoogle ScholarPubMed
Hsu, YW, Wang, SD, Wang, S, Morton, G, Zariwala, HA, de la Iglesia, HO, Turner, EE. 2014. Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement. J Neurosci 34: 1136611384.CrossRefGoogle ScholarPubMed
Ilango, A, Kesner, AJ, Keller, KL, Stuber, GD, Bonci, A, Ikemoto, S. 2014. Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J Neurosci 34: 817822.CrossRefGoogle ScholarPubMed
Jin, X, Tecuapetla, F, Costa, RM. 2014. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci 17: 423430.CrossRefGoogle ScholarPubMed
Kamin, LJ. 1968. “Attention-like” processes in classical conditioning. In Miami Symposium on the Prediction of Behavior: Aversive Stimulation (ed. Jones, MR), pp. 931. University of Miami Press Coral Gables, Florida.Google Scholar
Kamin, LJ. 1969. Predictability, surprise, attention, and conditioning. In Punishment and Aversive Behavior (ed. Campbell, BA, Church, RM), pp. 279296. Appleton-Century-Crofts, New York.Google Scholar
Killcross, S, Coutureau, E. 2003. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13: 400408.CrossRefGoogle ScholarPubMed
Kravitz, AV, Owen, SF, Kreitzer, AC. 2013. Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res 1511: 2132.CrossRefGoogle ScholarPubMed
Lima, SQ, Hromadka, T, Znamenskiy, P, Zador, AM. 2009. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One 4: e6099.CrossRefGoogle ScholarPubMed
Lin, JY, Knutsen, PM, Muller, A, Kleinfeld, D, Tsien, RY. 2013. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16: 14991508.CrossRefGoogle ScholarPubMed
Luo, L, Callaway, EM, Svoboda, K. 2008. Genetic dissection of neural circuits. Neuron 57: 634660.CrossRefGoogle ScholarPubMed
Mahler, SV, Berridge, KC. 2009. Which cue to “want?” Central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. J Neurosci 29: 65006513.CrossRefGoogle ScholarPubMed
Mattis, J, Tye, KM, Ferenczi, EA, Ramakrishnan, C, O’Shea, DJ, Prakash, R, Gunaydin, LA, Hyun, M, Fenno, LE, Gradinaru, V et al., 2012. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9: 159172.CrossRefGoogle Scholar
Namburi, P, Beyeler, A, Yorozu, S, Calhoon, GG, Halbert, SA, Wichmann, R, Holden, SS, Mertens, KL, Anahtar, M, Felix-Ortiz, AC et al., 2015. A circuit mechanism for differentiating positive and negative associations. Nature 520: 675678.CrossRefGoogle ScholarPubMed
Neve, RL, Carlezon, WA Jr. 2002. Gene delivery into the brain using viral vectors. In Neuropsychopharmacology: The Fifth Generation of Progress (ed. Davis, KL, Charney, D, Coyle, JT, Nemeroff, C). Lippincott, Williams, & Wilkins, Pennsylvania.Google Scholar
Nicola, SM. 2007. The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berl) 191: 521550.CrossRefGoogle ScholarPubMed
Pascoli, V, Terrier, J, Hiver, A, Luscher, C. 2015. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88: 10541066.CrossRefGoogle ScholarPubMed
Robinson, TE, Yager, LM, Cogan, ES, Saunders, BT. 2014. On the motivational properties of reward cues: Individual differences. Neuropharmacology 76: 450459.CrossRefGoogle ScholarPubMed
Root, DH, Melendez, RI, Zaborszky, L, Napier, TC. 2015. The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130: 2970.CrossRefGoogle ScholarPubMed
Rossi, MA, Sukharnikova, T, Hayrapetyan, VY, Yang, L, Yin, HH. 2013. Operant self-stimulation of dopamine neurons in the substantia nigra. PLoS One 8: e65799.CrossRefGoogle ScholarPubMed
Rothwell, PE, Hayton, SJ, Sun, GL, Fuccillo, MV, Lim, BK, Malenka, RC. 2015. Input- and output-specific regulation of serial order performance by corticostriatal circuits. Neuron 88: 345356.CrossRefGoogle ScholarPubMed
Saddoris, MP, Sugam, JA, Stuber, GD, Witten, IB, Deisseroth, K, Carelli, RM. 2015. Mesolimbic dopamine dynamically tracks, and is causally linked to, discrete aspects of value-based decision making. Biol Psychiatry 77: 903911.CrossRefGoogle ScholarPubMed
Saunders, BT, Robinson, TE. 2012. The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. Eur J Neurosci 36: 25212532.CrossRefGoogle ScholarPubMed
Schoenbaum, G, Roesch, M. 2005. Orbitofrontal cortex, associative learning, and expectancies. Neuron 47: 633636.CrossRefGoogle ScholarPubMed
Schultz, W. 2006. Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57: 87115.CrossRefGoogle ScholarPubMed
Senn, V, Wolff, SB, Herry, C, Grenier, F, Ehrlich, I, Grundemann, J, Fadok, JP, Muller, C, Letzkus, JJ, Luthi, A. 2014. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81: 428437.CrossRefGoogle ScholarPubMed
Smith, KS, Berridge, KC, Aldridge, JW. 2011. Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci U S A 108: E255E264.CrossRefGoogle ScholarPubMed
Smith, KS, Graybiel, AM. 2013a. A dual operator view of habitual behavior reflecting cortical and striatal dynamics. Neuron 79: 361374.CrossRefGoogle ScholarPubMed
Smith, KS, Graybiel, AM. 2013b. Using optogenetics to study habits. Brain Res 1511: 102114.CrossRefGoogle ScholarPubMed
Smith, KS, Graybiel, AM. 2014. Investigating habits: strategies, technologies and models. Front Behav Neurosci 8: 39.CrossRefGoogle ScholarPubMed
Smith, KS, Tindell, AJ, Aldridge, JW, Berridge, KC. 2009. Ventral pallidum roles in reward and motivation. Behav Brain Res 196: 155167.CrossRefGoogle ScholarPubMed
Smith, KS, Virkud, A, Deisseroth, K, Graybiel, AM. 2012. Reversible online control of habitual behavior by optogenetic perturbation of medial prefrontal cortex. Proc Natl Acad Sci U S A 109: 1893218937.CrossRefGoogle ScholarPubMed
Soudais, C, Skander, N, Kremer, EJ. 2004. Long-term in vivo transduction of neurons throughout the rat CNS using novel helper-dependent CAV-2 vectors. FASEB J 18: 391393.CrossRefGoogle ScholarPubMed
Stefanik, MT, Kalivas, PW. 2013. Optogenetic dissection of basolateral amygdala projections during cue-induced reinstatement of cocaine seeking. Front Behav Neurosci 7: 213.CrossRefGoogle ScholarPubMed
Steinberg, EE, Keiflin, R, Boivin, JR, Witten, IB, Deisseroth, K, Janak, PH. 2013. A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci 16: 966973.CrossRefGoogle ScholarPubMed
Stuber, GD, Britt, JP, Bonci, A. 2012. Optogenetic modulation of neural circuits that underlie reward seeking. Biol Psychiatry 71: 10611067.CrossRefGoogle ScholarPubMed
Stuber, GD, Sparta, DR, Stamatakis, AM, van Leeuwen, WA, Hardjoprajitno, JE, Cho, S, Tye, KM, Kempadoo, KA, Zhang, F, Deisseroth, K et al., 2011. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475: 377380.CrossRefGoogle ScholarPubMed
Taha, SA, Fields, HL. 2005. Encoding of palatability and appetitive behaviors by distinct neuronal populations in the nucleus accumbens. J Neurosci 25: 11931202.CrossRefGoogle ScholarPubMed
Thorndike, EL. 1898. Animal Intelligence: An Experimental Study of the Associative Processes in Animals. Macmillan, New York.CrossRefGoogle Scholar
Tindell, AJ, Smith, KS, Berridge, KC, Aldridge, JW. 2009. Dynamic computation of incentive salience: “wanting” what was never “liked”. J Neurosci 29: 1222012228.CrossRefGoogle ScholarPubMed
Tindell, AJ, Smith, KS, Peciña, S, Berridge, KC, Aldridge, JW. 2006. Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J Neurophysiol 96: 23992409.CrossRefGoogle ScholarPubMed
Tsai, HC, Zhang, F, Adamantidis, A, Stuber, GD, Bonci, A, de Lecea, L, Deisseroth, K. 2009. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324: 10801084.CrossRefGoogle ScholarPubMed
Tye, KM, Deisseroth, K. 2012. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13: 251266.CrossRefGoogle ScholarPubMed
Tye, KM, Prakash, R, Kim, SY, Fenno, LE, Grosenick, L, Zarabi, H, Thompson, KR, Gradinaru, V, Ramakrishnan, C, Deisseroth, K. 2011. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471: 358362.CrossRefGoogle ScholarPubMed
Ugolini, G. 2010. Advances in viral transneuronal tracing. J Neurosci Methods 194: 220.CrossRefGoogle ScholarPubMed
Wall, NR, De La Parra, M, Callaway, EM, Kreitzer, AC. 2013. Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 79: 347360.CrossRefGoogle ScholarPubMed
Wickersham, IR, Finke, S, Conzelmann, KK, Callaway, EM. 2007. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4: 4749.CrossRefGoogle ScholarPubMed
Witten, IB, Steinberg, EE, Lee, SY, Davidson, TJ, Zalocusky, KA, Brodsky, M, Yizhar, O, Cho, SL, Gong, S, Ramakrishnan, C et al., 2011. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72: 721733.CrossRefGoogle ScholarPubMed
Yizhar, O, Fenno, LE, Davidson, TJ, Mogri, M, Deisseroth, K. 2011. Optogenetics in neural systems. Neuron 71: 934.CrossRefGoogle ScholarPubMed

References

Al-Juboori, S. I., Dondzillo, A., Stubblefield, E. A., et al. (2013). Light scattering properties vary across different regions of the adult mouse brain. PLoS One, 8, e67626.CrossRefGoogle ScholarPubMed
Annegers, J. F., Hauser, W. A. and Elveback, L. R. (1979). Remission of seizures and relapse in patients with epilepsy. Epilepsia, 20, 729737.CrossRefGoogle ScholarPubMed
Azimipour, M., Atry, F. and Pashaie, R. (2015). Effect of blood vessels on light distribution in optogenetic stimulation of cortex. Opt Lett, 40, 21732176.CrossRefGoogle ScholarPubMed
Azimipour, M., Baumgartner, R., Liu, Y., et al. (2014). Extraction of optical properties and prediction of light distribution in rat brain tissue. J Biomed Opt, 19, 75001.CrossRefGoogle ScholarPubMed
Ben-Menachem, E. (2002). Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol, 1, 477482.CrossRefGoogle ScholarPubMed
Berg, A. T. (2008). The natural history of mesial temporal lobe epilepsy. Curr Opin Neurol, 21, 173178.CrossRefGoogle ScholarPubMed
Berglind, F., Ledri, M., Sorensen, A. T., et al. (2014). Optogenetic inhibition of chemically induced hypersynchronized bursting in mice. Neurobiol Dis, 65, 133141.CrossRefGoogle ScholarPubMed
Boyden, E. S., Zhang, F., Bamberg, E., et al. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 8, 12631268.CrossRefGoogle ScholarPubMed
Chuong, A. S., Miri, M. L., Busskamp, V., et al. (2014). Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci, 17, 11231129.CrossRefGoogle ScholarPubMed
Cockerell, O. C., Johnson, A. L., Sander, J. W., et al. (1994). Mortality from epilepsy: results from a prospective population-based study. Lancet, 344, 918921.CrossRefGoogle ScholarPubMed
Cooper, I. S., Amin, I., Riklan, M., et al. (1976). Chronic cerebellar stimulation in epilepsy. Clinical and anatomical studies. Arch Neurol, 33, 559570.CrossRefGoogle ScholarPubMed
Ellender, T. J., Raimondo, J. V., Irkle, A., et al. (2014). Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous after discharges. J Neurosci, 34, 1520815222.CrossRefGoogle Scholar
Engel, J. Jr. (2001). A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia, 42, 796803.CrossRefGoogle ScholarPubMed
Engel, J. Jr., Wiebe, S., French, J., et al. (2003). Practice parameter: temporal lobe and localized neocortical resections for epilepsy. Epilepsia, 44, 741751.CrossRefGoogle ScholarPubMed
Figueiredo, M., Lane, S., Tang, F., et al. (2011). Optogenetic experimentation on astrocytes. Exp Physiol, 96, 4050.CrossRefGoogle ScholarPubMed
Fisher, R. S., Acevedo, C., Arzimanoglou, A., et al. (2014). ILAE official report: a practical clinical definition of epilepsy. Epilepsia, 55, 475482.CrossRefGoogle ScholarPubMed
Fisher, R. S., van Emde Boas, W., Blume, W., et al. (2005). Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46, 470472.CrossRefGoogle ScholarPubMed
Fisher, R. S. and Velasco, A. L. (2014). Electrical brain stimulation for epilepsy. Nat Rev Neurol, 10, 261270.CrossRefGoogle ScholarPubMed
Freund, T. F. and Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347470.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Freund, T. F. and Katona, I. (2007). Perisomatic inhibition. Neuron, 56, 3342.CrossRefGoogle ScholarPubMed
Georgiadis, I., Kapsalaki, E. Z. and Fountas, K. N. (2013). Temporal lobe resective surgery for medically intractable epilepsy: a review of complications and side effects. Epilepsy Res Treat, 2013, 752195.CrossRefGoogle Scholar
Gradinaru, V., Thompson, K. R. and Deisseroth, K. (2008). eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol, 36, 129139.CrossRefGoogle ScholarPubMed
Gradinaru, V., Zhang, F., Ramakrishnan, C., et al. (2010). Molecular and cellular approaches for diversifying and extending optogenetics. Cell, 141, 154165.CrossRefGoogle ScholarPubMed
Klausberger, T. (2009). GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur J Neurosci, 30, 947957.CrossRefGoogle ScholarPubMed
Krook-Magnuson, E., Armstrong, C., Oijala, M., et al. (2013). On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun, 4, 1376.CrossRefGoogle ScholarPubMed
Krook-Magnuson, E., Szabo, G. G., Armstrong, C., et al. (2014). Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. eNeuro, 1, e.2014.CrossRefGoogle Scholar
Kros, L., Eelkman Rooda, O. H., Spanke, J. K., et al. (2015). Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann Neurol, 77, 10271049.CrossRefGoogle ScholarPubMed
Ladas, T. P., Chiang, C. C., Gonzalez-Reyes, L. E., et al. (2015). Seizure reduction through interneuron-mediated entrainment using low frequency optical stimulation. Exp Neurol, 269, 120132.CrossRefGoogle ScholarPubMed
Ledri, M., Madsen, M. G., Nikitidou, L., et al. (2014). Global optogenetic activation of inhibitory interneurons during epileptiform activity. J Neurosci, 34, 33643377.CrossRefGoogle ScholarPubMed
Lovett-Barron, M., Turi, G. F., Kaifosh, P., et al. (2012). Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci, 15, 423430, S421423.CrossRefGoogle ScholarPubMed
Marchionni, I. and Maccaferri, G. (2009). Quantitative dynamics and spatial profile of perisomatic GABAergic input during epileptiform synchronization in the CA1 hippocampus. J Physiol, 587, 56915708.CrossRefGoogle ScholarPubMed
Mullner, F. E., Wierenga, C. J. and Bonhoeffer, T. (2015). Precision of inhibition: dendritic inhibition by individual GABAergic synapses on hippocampal pyramidal cells is confined in space and time. Neuron, 87, 576589.CrossRefGoogle ScholarPubMed
Ngugi, A. K., Kariuki, S. M., Bottomley, C., et al. (2011). Incidence of epilepsy: a systematic review and meta-analysis. Neurology, 77, 10051012.CrossRefGoogle ScholarPubMed
Paz, J. T., Davidson, T. J., Frechette, E. S., et al. (2013). Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci, 16, 6470.CrossRefGoogle ScholarPubMed
Prunetti, P. and Perucca, E. (2011). New and forthcoming anti-epileptic drugs. Curr Opin Neurol, 24, 159164.CrossRefGoogle ScholarPubMed
Schuele, S. U. and Luders, H. O. (2008). Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol, 7, 514524.CrossRefGoogle ScholarPubMed
Schwarzer, C., Williamson, J. M., Lothman, E. W., et al. (1995). Somatostatin, neuropeptide Y, neurokinin B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy. Neuroscience, 69, 831845.CrossRefGoogle ScholarPubMed
Seino, M. (2006). Classification criteria of epileptic seizures and syndromes. Epilepsy Res, 70(Suppl. 1)., S2733.CrossRefGoogle ScholarPubMed
Sessolo, M., Marcon, I., Bovetti, S., et al. (2015). Parvalbumin-positive inhibitory interneurons oppose propagation but favor generation of focal epileptiform activity. J Neurosci, 35, 95449557.CrossRefGoogle ScholarPubMed
Shorvon, S. D. (2011). The etiologic classification of epilepsy. Epilepsia, 52, 10521057.CrossRefGoogle ScholarPubMed
Snead, O. C. 3rd (1995). Basic mechanisms of generalized absence seizures. Ann Neurol, 37, 146157.CrossRefGoogle ScholarPubMed
Somogyi, P. and Klausberger, T. (2005). Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol, 562, 926.CrossRefGoogle ScholarPubMed
Spencer, S. and Huh, L. (2008). Outcomes of epilepsy surgery in adults and children. Lancet Neurol, 7, 525537.CrossRefGoogle ScholarPubMed
Sperk, G., Marksteiner, J., Gruber, B., et al. (1992). Functional changes in neuropeptide Y- and somatostatin-containing neurons induced by limbic seizures in the rat. Neuroscience, 50, 831846.CrossRefGoogle ScholarPubMed
Sukhotinsky, I., Chan, A. M., Ahmed, O. J., et al. (2013). Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model. PLoS One, 8, e62013.CrossRefGoogle Scholar
Tanriverdi, T., Poulin, N. and Olivier, A. (2008). Life 12 years after temporal lobe epilepsy surgery: a long-term, prospective clinical study. Seizure, 17, 339349.CrossRefGoogle ScholarPubMed
Tomson, T., Walczak, T., Sillanpaa, M., et al. (2005). Sudden unexpected death in epilepsy: a review of incidence and risk factors. Epilepsia, 46(Suppl. 11), 5461.CrossRefGoogle ScholarPubMed
Tønnesen, J. (2013). Optogenetic cell control in experimental models of neurological disorders. Behav Brain Res, 255, 3543.CrossRefGoogle ScholarPubMed
Tønnesen, J., Sorensen, A. T., Deisseroth, K., et al. (2009). Optogenetic control of epileptiform activity. PNAS, 106, 1216212167.CrossRefGoogle ScholarPubMed
Tye, K. M. and Deisseroth, K. (2012). Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci, 13, 251266.CrossRefGoogle ScholarPubMed
Wiebe, S., Blume, W. T., Girvin, J. P., et al. (2001). A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med, 345, 311318.CrossRefGoogle ScholarPubMed
Wieser, H. G. (2004). ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia, 45, 695714.Google ScholarPubMed
Wittner, L., Eross, L., Czirjak, S., et al. (2005). Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus. Brain, 128, 138152.CrossRefGoogle ScholarPubMed
Woodson, W., Nitecka, L. and Ben-Ari, Y. (1989). Organization of the GABAergic system in the rat hippocampal formation: a quantitative immunocytochemical study. J Comp Neurol, 280, 254271.CrossRefGoogle ScholarPubMed
Wyeth, M. S., Zhang, N., Mody, I., et al. (2010). Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy. J Neurosci, 30, 89939006.CrossRefGoogle Scholar
Wykes, R. C., Heeroma, J. H., Mantoan, L., et al. (2012). Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med, 4, 161ra152.CrossRefGoogle Scholar
Yekhlef, L., Breschi, G. L., Lagostena, L., et al. (2015). Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex. J Neurophysiol, 113, 16161630.CrossRefGoogle ScholarPubMed
Zhang, F., Wang, L. P., Brauner, M., et al. (2007). Multimodal fast optical interrogation of neural circuitry. Nature, 446, 633639.CrossRefGoogle ScholarPubMed

References

Alilain, W. J., Li, X., Horn, K. P., Dhingra, R., Dick, T. E., Herlitze, S. & Silver, J. 2008. Light-induced rescue of breathing after spinal cord injury. J Neurosci, 28, 1186211870.CrossRefGoogle ScholarPubMed
Amoroso, M. W., Croft, G. F., Williams, D. J., O’keeffe, S., Carrasco, M. A., Davis, A. R., Roybon, L., Oakley, D. H., Maniatis, T., Henderson, C. E. & Wichterle, H. 2013. Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. J Neurosci, 33, 574586.CrossRefGoogle ScholarPubMed
Aravanis, A. M., Wang, L. P., Zhang, F., Meltzer, L. A., Mogri, M. Z., Schneider, M. B. & Deisseroth, K. 2007. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng, 4, S143S156.CrossRefGoogle ScholarPubMed
Arlow, R. L., Foutz, T. J. & Mcintyre, C. C. 2013. Theoretical principles underlying optical stimulation of myelinated axons expressing channelrhodopsin-2. Neuroscience, 248, 541551.CrossRefGoogle ScholarPubMed
Arthur-Farraj, P. J., Latouche, M., Wilton, D. K., Quintes, S., Chabrol, E., Banerjee, A., Woodhoo, A., Jenkins, B., Rahman, M., Turmaine, M., Wicher, G. K., Mitter, R., Greensmith, L., Behrens, A., Raivich, G., Mirsky, R. & Jessen, K. R. 2012. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron, 75, 633647.CrossRefGoogle ScholarPubMed
Brownstone, R. M. & Bui, T. V. 2010. Spinal interneurons providing input to the final common path during locomotion. Prog Brain Res, 187, 8195.CrossRefGoogle Scholar
Bruegmann, T., Van Bremen, T., Vogt, C. C., Send, T., Fleischmann, B. K. & Sasse, P. 2015. Optogenetic control of contractile function in skeletal muscle. Nat Commun, 6, 7153.CrossRefGoogle ScholarPubMed
Bryson, J. B., Machado, C. B., Crossley, M., Stevenson, D., Bros-Facer, V., Burrone, J., Greensmith, L. & Lieberam, I. 2014. Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice. Science, 344, 9497.CrossRefGoogle ScholarPubMed
Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M. & Studer, L. 2009. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol, 27, 275280.CrossRefGoogle ScholarPubMed
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A. & Zhang, F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819823.CrossRefGoogle ScholarPubMed
Darabid, H., Perez-Gonzalez, A. P. & Robitaille, R. 2014. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Rev Neurosci, 15, 703718.CrossRefGoogle ScholarPubMed
Di, P. W. C. & Di, P. S. G. C. 2015. Safety and efficacy of diaphragm pacing in patients with respiratory insufficiency due to amyotrophic lateral sclerosis (DiPALS): a multicentre, open-label, randomised controlled trial. Lancet Neurol, 14, 883892.Google Scholar
Ethier, C. & Miller, L. E. 2015. Brain-controlled muscle stimulation for the restoration of motor function. Neurobiol Dis, 83, 180190.CrossRefGoogle ScholarPubMed
Feldman, E. L., Boulis, N. M., Hur, J., Johe, K., Rutkove, S. B., Federici, T., Polak, M., Bordeau, J., Sakowski, S. A. & Glass, J. D. 2014. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: Phase 1 trial outcomes. Ann Neurol, 75, 363373.CrossRefGoogle ScholarPubMed
Filbin, M. T. 2003. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci, 4, 703713.CrossRefGoogle ScholarPubMed
Gordon, T., Tyreman, N. & Raji, M. A. 2011. The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci, 31, 5325–534.CrossRefGoogle ScholarPubMed
Hamada, T., Kimura, T. & Moritani, T. 2004. Selective fatigue of fast motor units after electrically elicited muscle contractions. J Electromyogr Kinesiol, 14, 531538.CrossRefGoogle ScholarPubMed
Harel, N. Y. & Strittmatter, S. M. 2006. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci, 7, 603616.CrossRefGoogle ScholarPubMed
Harper, J. M., Krishnan, C., Darman, J. S., Deshpande, D. M., Peck, S., Shats, I., Backovic, S., Rothstein, J. D. & Kerr, D. A. 2004. Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci U S A, 101, 71237128.CrossRefGoogle ScholarPubMed
Henneman, E. & Olson, C. B. 1965. Relations between structure and function in the design of skeletal muscles. J Neurophysiol, 28, 581598.CrossRefGoogle ScholarPubMed
Hochbaum, D. R., Zhao, Y., Farhi, S. L., Klapoetke, N., Werley, C. A., Kapoor, V., Zou, P., Kralj, J. M., Maclaurin, D., Smedemark-Margulies, N., Saulnier, J. L., Boulting, G. L., Straub, C., Cho, Y. K., Melkonian, M., Wong, G. K., Harrison, D. J., Murthy, V. N., Sabatini, B. L., Boyden, E. S., Campbell, R. E. & Cohen, A. E. 2014. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods, 11, 825833.CrossRefGoogle ScholarPubMed
Hockberger, P. E., Skimina, T. A., Centonze, V. E., Lavin, C., Chu, S., Dadras, S., Reddy, J. K. & White, J. G. 1999. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc Natl Acad Sci U S A, 96, 62556260.CrossRefGoogle ScholarPubMed
Homer, M. L., Nurmikko, A. V., Donoghue, J. P. & Hochberg, L. R. 2013. Sensors and decoding for intracortical brain computer interfaces. Annu Rev Biomed Eng, 15, 383405.CrossRefGoogle ScholarPubMed
Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M. & Hirase, H. 2011. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res, 70, 124127.CrossRefGoogle ScholarPubMed
Iyer, S. M., Montgomery, K. L., Towne, C., Lee, S. Y., Ramakrishnan, C., Deisseroth, K. & Delp, S. L. 2014. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat Biotechnol, 32, 274278.CrossRefGoogle ScholarPubMed
Jarosiewicz, B., Sarma, A. A., Bacher, D., Masse, N. Y., Simeral, J. D., Sorice, B., Oakley, E. M., Blabe, C., Pandarinath, C., Gilja, V., Cash, S. S., Eskandar, E. N., Friehs, G., Henderson, J. M., Shenoy, K. V., Donoghue, J. P. & Hochberg, L. R. 2015. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain–computer interface. Sci Transl Med, 7, 313ra179.CrossRefGoogle ScholarPubMed
Ji, Z. G., Ishizuka, T. & Yawo, H. 2013. Channelrhodopsins – their potential in gene therapy for neurological disorders. Neurosci Res, 75, 612.CrossRefGoogle ScholarPubMed
Kang, H. & Lichtman, J. W. 2013. Motor axon regeneration and muscle reinnervation in young adult and aged animals. J Neurosci, 33, 1948019491.CrossRefGoogle ScholarPubMed
King, C. E., Wang, P. T., Mccrimmon, C. M., Chou, C. C., Do, A. H. & Nenadic, Z. 2015. The feasibility of a brain–computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia. J Neuroeng Rehabil, 12, 80.CrossRefGoogle ScholarPubMed
Klapoetke, N. C., Murata, Y., Kim, S. S., Pulver, S. R., Birdsey-Benson, A., Cho, Y. K., Morimoto, T. K., Chuong, A. S., Carpenter, E. J., Tian, Z., Wang, J., Xie, Y., Yan, Z., Zhang, Y., Chow, B. Y., Surek, B., Melkonian, M., Jayaraman, V., Constantine-Paton, M., Wong, G. K. & Boyden, E. S. 2014. Independent optical excitation of distinct neural populations. Nat Methods, 11, 338346.CrossRefGoogle ScholarPubMed
Ladle, D. R., Pecho-Vrieseling, E. & Arber, S. 2007. Assembly of motor circuits in the spinal cord: driven to function by genetic and experience-dependent mechanisms. Neuron, 56, 270283.CrossRefGoogle ScholarPubMed
Lemon, R. N. 2008. Descending pathways in motor control. Annu Rev Neurosci, 31, 195218.CrossRefGoogle ScholarPubMed
Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D. & Tsien, R. Y. 2013. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci, 16, 14991508.CrossRefGoogle ScholarPubMed
Liske, H., Qian, X., Anikeeva, P., Deisseroth, K. & Delp, S. 2013. Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2. Sci Rep, 3, 3110.CrossRefGoogle ScholarPubMed
Llewellyn, M. E., Thompson, K. R., Deisseroth, K. & Delp, S. L. 2010. Orderly recruitment of motor units under optical control in vivo. Nat Med, 16, 11611165.CrossRefGoogle ScholarPubMed
Magown, P., Shettar, B., Zhang, Y. & Rafuse, V. F. 2015. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy. Nat Commun, 6, 8506.CrossRefGoogle ScholarPubMed
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., Dicarlo, J. E., Norville, J. E. & Church, G. M. 2013. RNA-guided human genome engineering via Cas9. Science, 339, 823826.CrossRefGoogle ScholarPubMed
Maury, Y., Come, J., Piskorowski, R. A., Salah-Mohellibi, N., Chevaleyre, V., Peschanski, M., Martinat, C. & Nedelec, S. 2015. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol, 33, 8996.CrossRefGoogle ScholarPubMed
Miyashita, T., Shao, Y. R., Chung, J., Pourzia, O. & Feldman, D. E. 2013. Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front Neural Circuits, 7, 8.Google ScholarPubMed
Montgomery, K. L., Yeh, A. J., Ho, J. S., Tsao, V., Mohan Iyer, S., Grosenick, L., Ferenczi, E. A., Tanabe, Y., Deisseroth, K., Delp, S. L. & Poon, A. S. 2015. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods, 12, 969974.CrossRefGoogle ScholarPubMed
Nicaise, C., Putatunda, R., Hala, T. J., Regan, K. A., Frank, D. M., Brion, J. P., Leroy, K., Pochet, R., Wright, M. C. & Lepore, A. C. 2012. Degeneration of phrenic motor neurons induces long-term diaphragm deficits following mid-cervical spinal contusion in mice. J Neurotrauma, 29, 27482760.CrossRefGoogle ScholarPubMed
Peters, O. M., Ghasemi, M. & Brown, R. H. Jr. 2015. Emerging mechanisms of molecular pathology in ALS. J Clin Invest, 125, 17671779.CrossRefGoogle ScholarPubMed
Suzuki, M., Mchugh, J., Tork, C., Shelley, B., Klein, S. M., Aebischer, P. & Svendsen, C. N. 2007. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One, 2, e689.CrossRefGoogle ScholarPubMed
Thompson, L. H. & Bjorklund, A. 2015. Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells. Neurobiol Dis, 79, 2840.CrossRefGoogle ScholarPubMed
Thomsen, G. M., Gowing, G., Svendsen, S. & Svendsen, C. N. 2014. The past, present and future of stem cell clinical trials for ALS. Exp Neurol, 262(Pt B), 127137.CrossRefGoogle ScholarPubMed
Towne, C., Montgomery, K. L., Iyer, S. M., Deisseroth, K. & Delp, S. L. 2013. Optogenetic control of targeted peripheral axons in freely moving animals. PLoS One, 8, e72691.CrossRefGoogle ScholarPubMed
Weick, J. P., Johnson, M. A., Skroch, S. P., Williams, J. C., Deisseroth, K. & Zhang, S. C. 2010. Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells, 28, 20082016.CrossRefGoogle ScholarPubMed
Wentz, C. T., Bernstein, J. G., Monahan, P., Guerra, A., Rodriguez, A. & Boyden, E. S. 2011. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng, 8, 046021.CrossRefGoogle ScholarPubMed
Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. 2002. Directed differentiation of embryonic stem cells into motor neurons. Cell, 110, 385397.CrossRefGoogle ScholarPubMed
Xu, L., Yan, J., Chen, D., Welsh, A. M., Hazel, T., Johe, K., Hatfield, G. & Koliatsos, V. E. 2006. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation, 82, 865875.CrossRefGoogle ScholarPubMed
Yohn, D. C., Miles, G. B., Rafuse, V. F. & Brownstone, R. M. 2008. Transplanted mouse embryonic stem-cell-derived motoneurons form functional motor units and reduce muscle atrophy. J Neurosci, 28, 1240912418.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×