Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-01T19:28:16.423Z Has data issue: false hasContentIssue false

Part VI - Optogenetics in Sleep, Prosthetics, and Epigenetics of Neurodegenerative Diseases

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 405 - 469
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adamantidis, A., Carter, M.C., De Lecea, L., 2009. Optogenetic deconstruction of sleep–wake circuitry in the brain. Front. Mol. Neurosci. 2, 31.Google Scholar
Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K., de Lecea, L., 2007. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420424.CrossRefGoogle ScholarPubMed
Alitto, H.J., Dan, Y., 2013. Cell-type-specific modulation of neocortical activity by basal forebrain input. Front. Syst. Neurosci. 6, 79.CrossRefGoogle ScholarPubMed
Alkire, M.T., Asher, C.D., Franciscus, A.M., Hahn, E.L., 2009. Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia. Anesthesiology 110, 766773.CrossRefGoogle ScholarPubMed
Anaclet, C., Pedersen, N.P., Ferrari, L.L., Venner, A., Bass, C.E., Arrigoni, E., Fuller, P.M., 2015. Basal forebrain control of wakefulness and cortical rhythms. Nat. Commun. 6, 8744.CrossRefGoogle ScholarPubMed
Arrigoni, E., Saper, C.B., 2014. What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake–sleep regulation. Curr. Opin. Neurobiol. 29, 165171.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Deisseroth, K., 2013. Recent advances in optogenetics and pharmacogenetics. Brain Res. 1511, 15.CrossRefGoogle ScholarPubMed
Astori, S., Wimmer, R.D., Lüthi, A., 2013. Manipulating sleep spindles – expanding views on sleep, memory, and disease. Trends Neurosci. 36, 738748.CrossRefGoogle ScholarPubMed
Babkoff, H., Sing, H.C., Thorne, D.R., Genser, S.G., Hegge, F.W., 1989. Perceptual distortions and hallucinations reported during the course of sleep deprivation. Percept. Mot. Skills 68, 787798.CrossRefGoogle ScholarPubMed
Barthó, P., Slézia, A., Mátyás, F., Faradzs-Zade, L., Ulbert, I., Harris, K.D., Acsády, L., 2014. Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron 82, 13671379.CrossRefGoogle ScholarPubMed
Blanco-Centurion, C., Xu, M., Murillo-Rodriguez, E., Gerashchenko, D., Shiromani, A.M., Salin-Pascual, R.J., Hof, P.R., Shiromani, P.J., 2006. Adenosine and sleep homeostasis in the basal forebrain. J. Neurosci. 26, 80928100.CrossRefGoogle Scholar
Blumenfeld, H., McCormick, D.A., 2000. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J. Neurosci. 20, 51535162.CrossRefGoogle ScholarPubMed
Bonnavion, P., de Lecea, L., 2010. Hypocretins in the control of sleep and wakefulness. Curr. Neurol. Neurosci. Rep. 10, 174179.CrossRefGoogle ScholarPubMed
Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K., 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 12631268.CrossRefGoogle ScholarPubMed
Brancaccio, M., Enoki, R., Mazuski, C.N., Jones, J., Evans, J.A., Azzi, A., 2014. Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J. Neurosci. 34, 1519215199.CrossRefGoogle ScholarPubMed
Brancaccio, M., Maywood, E.S., Chesham, J.E., Loudon, A.S.I., Hastings, M.H., 2013. A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 78, 714728.CrossRefGoogle ScholarPubMed
Carter, M.E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., Deisseroth, K., de Lecea, L., 2010. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 15261533.CrossRefGoogle ScholarPubMed
Cheong, E., Lee, S., Choi, B.J., Sun, M., Lee, C.J., Shin, H.-S., 2008. Tuning thalamic firing modes via simultaneous modulation of T- and L-type Ca2+ channels controls pain sensory gating in the thalamus. J. Neurosci. 28, 1333113340.CrossRefGoogle ScholarPubMed
Cheong, E., Zheng, Y., Lee, K., Lee, J., Kim, S., Sanati, M., Lee, S., Kim, Y.-S., Shin, H.-S., 2009. Deletion of phospholipase C β4 in thalamocortical relay nucleus leads to absence seizures. Proc. Natl. Acad. Sci. 106, 2191221917.CrossRefGoogle ScholarPubMed
Contreras, D., Destexhe, A., Sejnowski, T.J., Steriade, M., 1996. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274, 771774.CrossRefGoogle ScholarPubMed
Crunelli, V., David, F., Lőrincz, M.L., Hughes, S.W., 2015. The thalamocortical network as a single slow wave-generating unit. Curr. Opin. Neurobiol. 31, 7280.CrossRefGoogle ScholarPubMed
Crunelli, V., Hughes, S.W., 2010. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat. Neurosci. 13, 917.CrossRefGoogle ScholarPubMed
Cueni, L., Canepari, M., Luján, R., Emmenegger, Y., Watanabe, M., Bond, C.T., Franken, P., Adelman, J.P., Lüthi, A., 2008. T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat. Neurosci. 11, 683692.CrossRefGoogle ScholarPubMed
De Gennaro, L., Ferrara, M., 2003. Sleep spindles: an overview. Sleep Med. Rev. 7, 423440.CrossRefGoogle ScholarPubMed
Deisseroth, K., 2012. Optogenetics and psychiatry: applications, challenges, and opportunities. Biol. Psychiatry 71, 10301032.CrossRefGoogle ScholarPubMed
Deurveilher, S., Semba, K., 2005. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130, 165183.CrossRefGoogle ScholarPubMed
Diekelmann, S., Born, J., 2010. The memory function of sleep. Nat. Rev. Neurosci. 11, 114126.CrossRefGoogle ScholarPubMed
Dong, S., Allen, J.A., Farrell, M., Roth, B.L., 2010. A chemical-genetic approach for precise spatio-temporal control of cellular signaling. Mol. Biosyst. 6, 13761380.CrossRefGoogle ScholarPubMed
Dort, C.J.V., Zachs, D.P., Kenny, J.D., Zheng, S., Goldblum, R.R., Gelwan, N.A., Ramos, D.M., Nolan, M.A., Wang, K., Weng, F.-J., Lin, Y., Wilson, M.A., Brown, E.N., 2015. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc. Natl. Acad. Sci. 112, 584589.CrossRefGoogle ScholarPubMed
Eggermann, E., Serafin, M., Bayer, L., Machard, D., Saint-Mleux, B., Jones, B.E., Mühlethaler, M., 2001. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108, 177181.CrossRefGoogle ScholarPubMed
España, R.A., Reis, K.M., Valentino, R.J., Berridge, C.W., 2005. Organization of hypocretin/orexin efferents to locus coeruleus and basal forebrain arousal-related structures. J. Comp. Neurol. 481, 160178.CrossRefGoogle ScholarPubMed
Feinberg, I., 1974. Changes in sleep cycle patterns with age. J. Psychiatr. Res. 10, 283306.CrossRefGoogle ScholarPubMed
Fenno, L., Yizhar, O., Deisseroth, K., 2011. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389412.CrossRefGoogle ScholarPubMed
Gummadavelli, A., Motelow, J.E., Smith, N., Zhan, Q., Schiff, N.D., Blumenfeld, H., 2015. Thalamic stimulation to improve level of consciousness after seizures: Evaluation of electrophysiology and behavior. Epilepsia 56, 114124.CrossRefGoogle ScholarPubMed
Halassa, M.M., Siegle, J.H., Ritt, J.T., Ting, J.T., Feng, G., Moore, C.I., 2011. Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat. Neurosci. 14, 11181120.CrossRefGoogle ScholarPubMed
Haus, E.L., Smolensky, M.H., 2013. Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med. Rev. 17, 273284.CrossRefGoogle ScholarPubMed
Hayashi, Y., Kashiwagi, M., Yasuda, K., Ando, R., Kanuka, M., Sakai, K., Itohara, S., 2015. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science 350, 957961.CrossRefGoogle ScholarPubMed
Hobson, J.A., Pace-Schott, E.F., 2002. The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat. Rev. Neurosci. 3, 679693.CrossRefGoogle ScholarPubMed
Houser, C.R., Vaughn, J.E., Barber, R.P., Roberts, E., 1980. GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res. 200, 341354.CrossRefGoogle ScholarPubMed
Irmak, S.O., de Lecea, L., 2013. Basal forebrain cholinergic modulation of sleep transitions. Sleep 37, 19411951.CrossRefGoogle Scholar
Ito, H., Yanase, M., Yamashita, A., Kitabatake, C., Hamada, A., Suhara, Y., Narita, M., Ikegami, D., Sakai, H., Yamazaki, M., Narita, M., 2013. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol. Brain 6, 59.CrossRefGoogle ScholarPubMed
Jego, S., Glasgow, S.D., Herrera, C.G., Ekstrand, M., Reed, S.J., Boyce, R., Friedman, J., Burdakov, D., Adamantidis, A.R., 2013. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat. Neurosci. 16, 16371643.CrossRefGoogle ScholarPubMed
Kim, A., Latchoumane, C., Lee, S., Kim, G.B., Cheong, E., Augustine, G.J., Shin, H.-S., 2012. Optogenetically induced sleep spindle rhythms alter sleep architectures in mice. Proc. Natl. Acad. Sci. 109, 2067320678.CrossRefGoogle ScholarPubMed
Lee, S.E., Lee, J., Latchoumane, C., Lee, B., Oh, S.-J., Saud, Z.A., Park, C., Sun, N., Cheong, E., Chen, C.-C. et al., 2014. Rebound burst firing in the reticular thalamus is not essential for pharmacological absence seizures in mice. Proc. Natl. Acad. Sci. 111, 1182811833.CrossRefGoogle Scholar
Leeman-Markowski, B.A., Smart, O.L., Faught, R.E., Gross, R.E., Meador, K.J., 2015. Cessation of gamma activity in the dorsomedial nucleus associated with loss of consciousness during focal seizures. Epilepsy Behav. 51, 215220.CrossRefGoogle ScholarPubMed
Lewis, L.D., Voigts, J., Flores, F.J., Schmitt, L.I., Wilson, M.A., Halassa, M.M., Brown, E.N., 2015. Thalamic reticular nucleus induces fast and local modulation of arousal state. Elife 4, e08760.CrossRefGoogle ScholarPubMed
Lima, S.Q., Miesenböck, G., 2005. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141152.CrossRefGoogle ScholarPubMed
Linden, M.L., Heynen, A.J., Haslinger, R.H., Bear, M.F., 2009. Thalamic activity that drives visual cortical plasticity. Nat. Neurosci. 12, 390392.CrossRefGoogle ScholarPubMed
Lindsley, D.B., 1960. Attention, consciousness, sleep, and wakefulness, in: Magoun, H.W., Hall, V. (Eds.), Handbook of Physiology. American Physiological Society.Google Scholar
Llinás, R., Ribary, U., Contreras, D., Pedroarena, C., 1998. The neuronal basis for consciousness. Philos. Trans. R. Soc. B Biol. Sci. 353, 18411849.Google ScholarPubMed
Lu, J., Sherman, D., Devor, M., Saper, C.B., 2006. A putative flip–flop switch for control of REM sleep. Nature 441, 589594.CrossRefGoogle Scholar
Luppi, P.H., Peyron, C., Fort, P., 2013. Role of MCH neurons in paradoxical (REM) sleep control. Sleep 36, 17751776.CrossRefGoogle ScholarPubMed
Mathur, B.N., 2014. The claustrum in review. Front. Syst. Neurosci. 8, 48.CrossRefGoogle ScholarPubMed
McCarley, R.W., Massaquoi, S.G., 1992. Neurobiological structure of the revised limit cycle reciprocal interaction model of REM cycle control. J. Sleep Res. 1, 132137.CrossRefGoogle ScholarPubMed
McCormick, D.A., Bal, T., 1994. Sensory gating mechanisms of the thalamus. Curr. Opin. Neurobiol. 4, 550556.CrossRefGoogle ScholarPubMed
McCormick, D.A., Bal, T., 1997. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185215.CrossRefGoogle ScholarPubMed
McCormick, D.A., von Krosigk, M., 1992. Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc. Natl. Acad. Sci. 89, 27742778.CrossRefGoogle ScholarPubMed
Mease, R.A., Krieger, P., Groh, A., 2014. Cortical control of adaptation and sensory relay mode in the thalamus. Proc. Natl. Acad. Sci. 111, 67986803.CrossRefGoogle ScholarPubMed
Mesbah-Oskui, L., Orser, B.A., Horner, R.L., 2014. Thalamic δ-subunit containing GABAA receptors promote electrocortical signatures of deep non-REM sleep but do not mediate the effects of etomidate at the thalamus in vivo. J. Neurosci. 34, 1225312266.CrossRefGoogle Scholar
Montemurro, M.A., Panzeri, S., Maravall, M., Alenda, A., Bale, M.R., Brambilla, M., Petersen, R.S., 2007. Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory thalamus. J. Neurophysiol. 98, 18711882.CrossRefGoogle ScholarPubMed
Nishino, S., Fujiki, N., Ripley, B., Sakurai, E., Kato, M., Watanabe, T., Mignot, E., Yanai, K., 2001. Decreased brain histamine content in hypocretin/orexin receptor-2 mutated narcoleptic dogs. Neurosci. Lett. 313, 125128.CrossRefGoogle ScholarPubMed
Pace-Schott, E.F., Hobson, J.A., 2002. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat. Rev. Neurosci. 3, 591605.CrossRefGoogle ScholarPubMed
Paz, J.T., Davidson, T.J., Frechette, E.S., Delord, B., Parada, I., Peng, K., Deisseroth, K., Huguenard, J.R., 2013. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16, 6470.CrossRefGoogle ScholarPubMed
Peyron, C., Tighe, D.K., van den Pol, A.N., Lecea, L., Heller, H.C., Sutcliffe, J.G., Kilduff, T.S., 1998. Neurons containing hypocretin (Orexin) project to multiple neuronal systems. J. Neurosci. 18, 999610015.CrossRefGoogle ScholarPubMed
Pinault, D., 2004. The thalamic reticular nucleus: structure, function and concept. Brain Res. Rev. 46, 131.CrossRefGoogle ScholarPubMed
Poulet, J.F., Fernandez, L.M., Crochet, S., Petersen, C.C., 2012. Thalamic control of cortical states. Nat. Neurosci. 15, 370372.CrossRefGoogle ScholarPubMed
Rechtschaffen, A., Gilliland, M.A., Bergmann, B.M., Winter, J.B., 1983. Physiological correlates of prolonged sleep deprivation in rats. Science 221, 182184.CrossRefGoogle ScholarPubMed
Roux, L., Stark, E., Sjulson, L., Buzsáki, G., 2014. In vivo optogenetic identification and manipulation of GABAergic interneuron subtypes. Curr. Opin. Neurobiol. 26, 8895.CrossRefGoogle ScholarPubMed
Saito, Y.C., Tsujino, N., Hasegawa, E., Akashi, K., Abe, M., Mieda, M., Sakimura, K., Sakurai, T., 2013. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front. Neural Circuits 7, 192.CrossRefGoogle ScholarPubMed
Sarter, M., Bruno, J.P., 1999. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 95, 933952.CrossRefGoogle Scholar
Schiff, N.D., 2008. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann. N. Y. Acad. Sci. 1129, 105118.CrossRefGoogle ScholarPubMed
Sherin, J.E., Shiromani, P.J., McCarley, R.W., Saper, C.B., 1996. Activation of ventrolateral preoptic neurons during sleep. Science 271, 216219.CrossRefGoogle ScholarPubMed
Steriade, M., 2001. The GABAergic reticular nucleus: a preferential target of corticothalamic projections. Proc. Natl. Acad. Sci. 98, 36253627.CrossRefGoogle ScholarPubMed
Steriade, M., Contreras, D., Dossi, R.C., Nunez, A., 1993a. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neurosci. 13, 32843299.CrossRefGoogle ScholarPubMed
Steriade, M., Llinás, R.R., 1988. The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev. 68, 649742.CrossRefGoogle ScholarPubMed
Steriade, M., McCormick, D.A., Sejnowski, T.J., 1993b. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679685.CrossRefGoogle ScholarPubMed
Stroh, A., Adelsberger, H., Groh, A., Rühlmann, C., Fischer, S., Schierloh, A., Deisseroth, K., Konnerth, A., 2013. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 77, 11361150.CrossRefGoogle ScholarPubMed
Stujenske, J.M., Spellman, T., Gordon, J.A., 2015. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525534.CrossRefGoogle ScholarPubMed
Talley, E.M., Cribbs, L.L., Lee, J.-H., Daud, A., Perez-Reyes, E., Bayliss, D.A., 1999. Differential distribution of three members of a gene family encoding low voltage-activated (t-type) calcium channels. J. Neurosci. 19, 18951911.CrossRefGoogle ScholarPubMed
Taylor, H.L., Crunelli, V., 2015. Optogenetic drive of thalamocortical neurons can block and induce experimental absence seizures in freely moving animals. Proc. Physiol. Soc. 34.Google Scholar
Tsunematsu, T., Tabuchi, S., Tanaka, K.F., Boyden, E.S., Tominaga, M., Yamanaka, A., 2013. Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav. Brain Res. 255, 6474.CrossRefGoogle ScholarPubMed
Tye, K.M., Deisseroth, K., 2012. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251266.CrossRefGoogle ScholarPubMed
Van der Werf, Y.D., Witter, M.P., Groenewegen, H.J., 2002. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Rev. 39, 107140.CrossRefGoogle ScholarPubMed
Venkatraman, V., Huettel, S.A., Chuah, L.Y.M., Payne, J.W., Chee, M.W.L., 2011. Sleep deprivation biases the neural mechanisms underlying economic preferences. J. Neurosci. 31, 37123718.CrossRefGoogle ScholarPubMed
Villablanca, J., Salinas-Zeballos, M.E., 1972. Sleep–wakefulness, EEG and behavioral studies of chronic cats without the thalamus: the “athalamic” cat. Arch. Ital. Biol. 110, 383411.Google ScholarPubMed
Welsh, D.K., Richardson, G.S., Dement, W.C., 1986. Effect of age on the circadian pattern of sleep and wakefulness in the mouse. J. Gerontol. 41, 579586.CrossRefGoogle Scholar
Whalley, K., 2015. Sleep: dissecting sleep circuits. Nat. Rev. Neurosci. 16, 704.Google Scholar
Williamson, A., Feyer, A., 2000a. Moderate sleep deprivation produces impairments in cognitive and motor performance equivalent to legally prescribed levels of alcohol intoxication. Occup. Environ. Med. 57, 649655.CrossRefGoogle ScholarPubMed
Williamson, A.M., Feyer, A.-M., 2000b. Moderate sleep deprivation produces impairments in cognitive and motor performance equivalent to legally prescribed levels of alcohol intoxication. Occup. Environ. Med. 57, 649655.CrossRefGoogle ScholarPubMed
Wimmer, R.D., Astori, S., Bond, C.T., Rovó, Z., Chatton, J.-Y., Adelman, J.P., Franken, P., Lüthi, A., 2012. Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold. J. Neurosci. 32, 1391713928.CrossRefGoogle ScholarPubMed
Xu, M., Chung, S., Zhang, S., Zhong, P., Ma, C., Chang, W.-C., Weissbourd, B., Sakai, N., Luo, L., Nishino, S., Dan, Y., 2015. Basal forebrain circuit for sleep-wake control. Nat. Neurosci. 18, 16411647.CrossRefGoogle ScholarPubMed
Yang, C., Franciosi, S., Brown, R.E., 2013. Adenosine inhibits the excitatory synaptic inputs to basal forebrain cholinergic, GABAergic, and parvalbumin neurons in mice. Front. Neurol. 4, 77.CrossRefGoogle ScholarPubMed
Yang, C., McKenna, J.T., Zant, J.C., Winston, S., Basheer, R., Brown, R.E., 2014. Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. J. Neurosci. 34, 28322844.CrossRefGoogle ScholarPubMed
Zemelman, B.V., Lee, G.A., Ng, M., Miesenböck, G., 2002. Selective photostimulation of genetically ChARGed neurons. Neuron 33, 1522.CrossRefGoogle ScholarPubMed

References

Asokan, Aravind, Schaffer, David V., and Samulski, R. Jude. 2012. “The AAV Vector Toolkit: Poised at the Clinical Crossroads.” Molecular Therapy 20 (4): 699708.CrossRefGoogle ScholarPubMed
Barrett, John, Berlinguer-Palmini, Roland, and Degenaar, Patrick. 2014. “Optogenetic Approaches to Retinal Prosthesis.” Visual Neuroscience 31 (4–5): 345–54.CrossRefGoogle ScholarPubMed
Baskent, Deniz. 2006. “Speech Recognition in Normal Hearing and Sensorineuronal Hearing Loss as a Function of the Number of Spectral Channels.” The Journal of the Acoustic Society of America 120 (5): 2908–25.CrossRefGoogle Scholar
Beadle, Elizabeth A. R., McKinley, Dyan J., Nikolopoulos, Thomas P., Brough, Jackie, O’Donoghue, Gerard M., and Archbold, Sue M.. 2005. “Long-Term Functional Outcomes and Academic-Occupational Status in Implanted Children after 10 to 14 Years of Cochlear Implant Use.” Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 26 (6): 1152–60.CrossRefGoogle ScholarPubMed
Berndt, André, Yizhar, Ofer, Gunaydin, Lisa A., Hegemann, Peter, and Deisseroth, Karl. 2009. “Bi-Stable Neural State Switches.” Nature Neuroscience 12 (2): 229–34.CrossRefGoogle ScholarPubMed
Bernstein, Jacob G., Han, Xue, Henninger, Michael A., Ko, Emily Y., Qian, Xiaofeng, Franzesi, Giovanni Talei, McConnell, Jackie P., Stern, Patrick, Desimone, Robert, and Boyden, Edward S.. 2008. “Prosthetic Systems for Therapeutic Optical Activation and Silencing of Genetically-Targeted Neurons.” Proceedings – Society of Photo-Optical Instrumentation Engineers 6854: 68540H.Google ScholarPubMed
Bilak, M. M., Bilak, S. R., and Morest, D. K.. 1996. “Differential Expression of N-Methyl-D-Aspartate Receptor in the Cochlear Nucleus of the Mouse.” Neuroscience 75 (4): 1075–97.CrossRefGoogle ScholarPubMed
Bingabr, Mohamed, Espinoza-Varas, Blas, and Loizou, Philipos C.. 2008. “Simulating the Effect of Spread of Excitation in Cochlear Implants.” Hearing Research 241 (1–2): 73–9.CrossRefGoogle ScholarPubMed
Boëx, Colette, de Balthasar, Chloé, Kós, Maria-Izabel, and Pelizzone, Marco. 2003. “Electrical Field Interactions in Different Cochlear Implant Systems.” The Journal of the Acoustical Society of America 114 (4 Pt 1): 2049–57.Google ScholarPubMed
Boyden, Edward S. 2011. “A History of Optogenetics: The Development of Tools for Controlling Brain Circuits with Light.” F1000 Biology Reports 3: 11.CrossRefGoogle ScholarPubMed
Boyden, Edward S., Zhang, Feng, Bamberg, Ernst, Nagel, Georg, and Deisseroth, Karl. 2005. “Millisecond-Timescale, Genetically Targeted Optical Control of Neural Activity.” Nature Neuroscience 8 (9): 1263.CrossRefGoogle ScholarPubMed
Brackmann, D. E., Hitselberger, W. E., Nelson, R. A., Moore, J., Waring, M. D., Portillo, F., Shannon, R. V., and Telischi, F. F.. 1993. “Auditory Brainstem Implant: I. Issues in Surgical Implantation.” Otolaryngology – Head and Neck Surgery: Official Journal of American Academy of Otolaryngology – Head and Neck Surgery 108 (6): 624–33.CrossRefGoogle ScholarPubMed
Cai, Dawen, Cohen, Kimberly B., Luo, Tuanlian, Lichtman, Jeff W., and Sanes, Joshua R.. 2013. “New Tools for the Brainbow Toolbox.” Nature Methods 10 (6): 540–47.CrossRefGoogle Scholar
Cayce, Jonathan M., Friedman, Robert M., Chen, Gang, Jansen, E. Duco, Mahadevan-Jansen, Anita, and Roe, Anna W.. 2014. “Infrared Neural Stimulation of Primary Visual Cortex in Non-Human Primates.” NeuroImage 84: 181–90.CrossRefGoogle ScholarPubMed
Goßler, Christian and Bierbrauer, Colin. 2014. “GaN-Based Micro-LED Arrays on Flexible Substrates for Optical Cochlear Implants.” Journal of Physics D: Applied Physics 47 (20): 205401.CrossRefGoogle Scholar
Colletti, Liliana, Shannon, Robert, and Colletti, Vittorio. 2012. “Auditory Brainstem Implants for Neurofibromatosis Type 2.” Current Opinion in Otolaryngology & Head and Neck Surgery 20 (5): 353–57.CrossRefGoogle ScholarPubMed
Colletti, Liliana, Shannon, Robert V., and Colletti, Vittorio. 2014. “The Development of Auditory Perception in Children Following Auditory Brainstem Implantation.” Audiology & Neuro-Otology 19 (6): 386–94.CrossRefGoogle ScholarPubMed
Colletti, Vittorio, Shannon, Robert, Carner, Marco, Veronese, Sheila, and Colletti, Liliana. 2009. “Outcomes in Nontumor Adults Fitted with the Auditory Brainstem Implant: 10 Years’ Experience.” Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 30 (5): 614–18.CrossRefGoogle Scholar
Colletti, Vittorio, Shannon, Robert V., Carner, Marco, Veronese, Sheila, and Colletti, Liliana. 2010. “Complications in Auditory Brainstem Implant Surgery in Adults and Children.” Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 31 (4): 558–64.CrossRefGoogle ScholarPubMed
Darrow, Keith N., Slama, Michaël C. C., Kozin, Elliott D., Owoc, Maryanna, Hancock, Kenneth, Kempfle, Judith, Edge, Albert, et al. 2015. “Optogenetic Stimulation of the Cochlear Nucleus Using Channelrhodopsin-2 Evokes Activity in the Central Auditory Pathways.” Brain Research 1599: 4456.CrossRefGoogle ScholarPubMed
Dittgen, Tanjew, Nimmerjahn, Axel, Komai, Shoji, Licznerski, Pawel, Waters, Jack, Margrie, Troy W., Helmchen, Fritjof, Denk, Winfried, Brecht, Michael, and Osten, Pavel. 2004. “Lentivirus-Based Genetic Manipulations of Cortical Neurons and Their Optical and Electrophysiological Monitoring In Vivo.” Proceedings of the National Academy of Sciences of the United States of America 101 (52): 18206–11.Google ScholarPubMed
Ebinger, K., Otto, S., Arcaroli, J., Staller, S., and Arndt, P.. 2000. “Multichannel Auditory Brainstem Implant: US Clinical Trial Results.” The Journal of Laryngology and Otology. 27: 50–3.Google Scholar
Eisen, Marc D. 2003. “Djourno, Eyries, and the First Implanted Electrical Neural Stimulator to Restore Hearing.” Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 24 (3): 500–6.CrossRefGoogle ScholarPubMed
Eisenberg, Laurie S. 2015. “The Contributions of William F. House to the Field of Implantable Auditory Devices.” Hearing Research 322: 5256.CrossRefGoogle Scholar
Eshraghi, Adrien A., Nazarian, Ronen, Telischi, Fred F., Rajguru, Suhrud M., Truy, Eric, and Gupta, Chhavi. 2012. “The Cochlear Implant: Historical Aspects and Future Prospects.” Anatomical Record (Hoboken, N.J.: 2007) 295 (11): 1967–80.Google ScholarPubMed
Evans, D. Gareth. 1993. “Neurofibromatosis 2.” In GeneReviews(®), edited by Pagon, Roberta A., Adam, Margaret P., Ardinger, Holly H., Wallace, Stephanie E., Amemiya, Anne, Bean, Lora JH, Bird, Thomas D., et al., Seattle (WA): University of Washington, Seattle. http://www.ncbi.nlm.nih.gov/books/NBK1201/.Google Scholar
Fishman, K. E., Shannon, R. V., and Slattery, W. H.. 1997. “Speech Recognition as a Function of the Number of Electrodes Used in the SPEAK Cochlear Implant Speech Processor.” Journal of Speech, Language, and Hearing Research: JSLHR 40 (5): 1201–15.CrossRefGoogle ScholarPubMed
Fretz, R. J. and Fravel, R. P.. 1985. “Design and Function: A Physical and Electrical Description of the 3M House Cochlear Implant System.” Ear and Hearing 6 (3 Suppl.): 14S19S.CrossRefGoogle ScholarPubMed
Garnham, Carolyn, O’Driscoll, Martin, Ramsden, Richard, and Saeed, Shakeel. 2002. “Speech Understanding in Noise with a Med-El COMBI 40+ Cochlear Implant Using Reduced Channel Sets.” Ear and Hearing 23 (6): 540–52.CrossRefGoogle ScholarPubMed
Geier, L., Barker, M., Fisher, L., and Opie, J.. 1999. “The Effect of Long-Term Deafness on Speech Recognition in Postlingually Deafened Adult CLARION Cochlear Implant Users.” The Annals of Otology, Rhinology & Laryngology. Supplement 177: 80–3.Google ScholarPubMed
Golding, Nace L. and Oertel, Donata. 2012. “Synaptic Integration in Dendrites: Exceptional Need for Speed.” The Journal of Physiology 590 (Pt 22): 5563–69.CrossRefGoogle Scholar
Gradinaru, Viviana, Zhang, Feng, Ramakrishnan, Charu, Mattis, Joanna, Prakash, Rohit, Diester, Ilka, Goshen, Inbal, Thompson, Kimberly R., and Deisseroth, Karl. 2010. “Molecular and Cellular Approaches for Diversifying and Extending Optogenetics.” Cell 141 (1): 154–65.CrossRefGoogle ScholarPubMed
Grossman, Nir, Poher, Vincent, Grubb, Matthew S., Kennedy, Gordon T., Nikolic, Konstantin, McGovern, Brian, Palmini, Rolando Berlinguer, et al. 2010. “Multi-Site Optical Excitation Using ChR2 and Micro-LED Array.” Journal of Neural Engineering 7 (1): 16004.CrossRefGoogle ScholarPubMed
Gunaydin, Lisa A., Yizhar, Ofer, Berndt, André, Sohal, Vikaas S., Deisseroth, Karl, and Hegemann, Peter. 2010. “Ultrafast Optogenetic Control.” Nature Neuroscience 13 (3): 387–92.CrossRefGoogle ScholarPubMed
Guo, Wei, Hight, Ariel E., Chen, Jenny X., Klapoetke, Nathan C., Hancock, Kenneth E., Shinn-Cunningham, Barbara G., Boyden, Edward S., Lee, Daniel J., and Polley, Daniel B.. 2015. “Hearing the Light: Neural and Perceptual Encoding of Optogenetic Stimulation in the Central Auditory Pathway.” Scientific Reports 5: 10319.CrossRefGoogle ScholarPubMed
Guru, Akash, Post, Ryan J., Ho, Yi-Yun, and Warden, Melissa R.. 2015. “Making Sense of Optogenetics.” International Journal of Neuropsychopharmacology 18 (11): pyv079.CrossRefGoogle ScholarPubMed
Han, Xue and Boyden, Edward S.. 2007. “Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution.” PLoS ONE 2 (3): e299.CrossRefGoogle ScholarPubMed
Han, Xue, Qian, Xiaofeng, Bernstein, Jacob G., Zhou, Hui-Hui, Franzesi, Giovanni Talei, Stern, Patrick, Bronson, Roderick T., Graybiel, Ann M., Desimone, Robert, and Boyden, Edward S.. 2009. “Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain.” Neuron 62 (2): 191–8.CrossRefGoogle ScholarPubMed
Hernandez, Victor H., Gehrt, Anna, Reuter, Kirsten, Jing, Zhizi, Jeschke, Marcus, Schulz, Alejandro Mendoza, Hoch, Gerhard, et al. 2014. “Optogenetic Stimulation of the Auditory Pathway.” The Journal of Clinical Investigation 124 (3): 1114–29.CrossRefGoogle ScholarPubMed
Hight, Ariel E., Kozin, Elliott D., Darrow, Keith, Lehmann, Ashton, Boyden, Edward, Brown, M. Christian, and Lee, Daniel J.. 2015b. “Superior Temporal Resolution of Chronos versus Channelrhodopsin-2 in an Optogenetic Model of the Auditory Brainstem Implant.” Hearing Research 322: 235–41.CrossRefGoogle Scholar
Hight, Ariel E., Kozin, Elliott, Meng, Xiankai, Guex, Amélie, Kaplan, Alyson, Lacour, Stephanie, Edge, Albert, Brown, M. Christian, and Lee, Daniel. 2015a. “Optogenetic Control of Cochlear Nucleus Neurons Using Spatially Focused Beams from a Laser Collimator [Abstract].” Association for Research in Otolaryngology Abstracts Midwinter Meeting 2015, February.Google Scholar
Hirschbiegel, Constantin. 2015. “The Propagation of Optical Impulses in Optogenetic Auditory Brainstem Implants [Master’s Thesis].”Google Scholar
Izzo, Agnella D., Walsh, Joseph T., Jansen, E. Duco, Bendett, Mark, Webb, Jim, Ralph, Heather, and Richter, Claus-Peter. 2007. “Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength.” IEEE Transactions on Bio-Medical Engineering 54 (6 Pt 1): 1108–14.CrossRefGoogle ScholarPubMed
Jenkins, M. W., Duke, A. R., Gu, S., Chiel, H. J., Fujioka, H., Watanabe, M., Jansen, E. D., and Rollins, A. M.. 2010. “Optical Pacing of the Embryonic Heart.” Nature Photonics 4: 623–26.CrossRefGoogle ScholarPubMed
Kang, Robert, Nimmons, Grace Liu, Drennan, Ward, Longnion, Jeff, Ruffin, Chad, Nie, Kaibao, Won, Jong Ho, Worman, Tina, Yueh, Bevan, and Rubinstein, Jay. 2009. “Development and Validation of the University of Washington Clinical Assessment of Music Perception Test.” Ear and Hearing 30 (4): 411–8.Google ScholarPubMed
Kaplan, Alyson B., Kozin, Elliott D., Puram, Sidharth V., Owoc, Maryanna S., Shah, Parth V., Hight, Ariel E., Sethi, Rosh K.V., Remenschneider, Aaron K., and Lee, Daniel J.. 2015. “Auditory Brainstem Implant Candidacy in the United States in Children 0–17 Years Old.” International Journal of Pediatric Otorhinolaryngology 79 (3): 310–5.CrossRefGoogle ScholarPubMed
Kay, Mark A., Glorioso, Joseph C., and Naldini, Luigi. 2001. “Viral Vectors for Gene Therapy: The Art of Turning Infectious Agents into Vehicles of Therapeutics.” Nature Medicine 7 (1): 3340.CrossRefGoogle ScholarPubMed
Keppeler, Daniel, Hernandez, Victor, Gehrt, Anna, Jeschke, Marcus, Wrobel, Christian, Hoch, Gerhard, Goßler, Christian, et al. 2015. “Towards Optogenetic Stimulation of the Auditory Pathway: Implementing the Fast Channelrhodopsin Chronos and Multichannel microLED Arrays [Abstract].” Association for Research in Otolaryngology Abstracts Midwinter Meeting 2015, February.CrossRefGoogle Scholar
Kim, Tae-Il, McCall, Jordan G., Jung, Yei Hwan, Huang, Xian, Siuda, Edward R., Li, Yuhang, Song, Jizhou, et al. 2013. “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics.” Science (New York, N.Y.) 340 (6129): 211–6.CrossRefGoogle ScholarPubMed
Klapoetke, Nathan C., Murata, Yasunobu, Kim, Sung Soo, Pulver, Stefan R., Birdsey-Benson, Amanda, Cho, Yong Ku, Morimoto, Tania K., et al. 2014. “Independent Optical Excitation of Distinct Neural Populations.” Nature Methods 11 (3): 338–46.Google ScholarPubMed
Kohlberg, Gavriel, Spitzer, Jaclyn B., Mancuso, Dean, and Lalwani, Anil K.. 2014. “Does Cochlear Implantation Restore Music Appreciation?The Laryngoscope 124 (3): 587–8.CrossRefGoogle ScholarPubMed
Kozin, Elliott, Hight, Ariel E., Meng, Xiankai, Kaplan, Alyson, Lehmann, Ashton, Boyden, Edward, Edge, Albert, Brown, M. Christian, and Lee, Daniel. 2015. “Comparison of Virally-Mediated Transfer of ChR2 to Transgenic Expression of ChR2 in the Cochlear Nucleus: Implications for Development of an Optical Auditory Brainstem Implant [Abstract].” Association for Research in Otolaryngology Abstracts Midwinter Meeting 2015, February.Google Scholar
Kuchta, Johannes, Otto, Steven R., Shannon, Robert V., Hitselberger, William E., and Brackmann, Derald E.. 2004. “The Multichannel Auditory Brainstem Implant: How Many Electrodes Make Sense?Journal of Neurosurgery 100 (1): 1623.CrossRefGoogle ScholarPubMed
Lim, Hubert H., Lenarz, Thomas, Anderson, David J., and Lenarz, Minoo. 2008. “The Auditory Midbrain Implant: Effects of Electrode Location.” Hearing Research 242 (1–2): 7485.CrossRefGoogle ScholarPubMed
Lin, John Y. 2011. “A User’s Guide to Channelrhodopsin Variants: Features, Limitations and Future Developments.” Experimental Physiology 96 (1): 1925.CrossRefGoogle ScholarPubMed
Lin, John Y., Knutsen, Per Magne, Muller, Arnaud, Kleinfeld, David, and Tsien, Roger Y.. 2013. “ReaChR: A Red-Shifted Variant of Channelrhodopsin Enables Deep Transcranial Optogenetic Excitation.” Nature Neuroscience 16 (10): 1499–508.CrossRefGoogle ScholarPubMed
Mason, Matthew R.J., Ehlert, Erich M.E., Eggers, Ruben, Pool, Chris W., Hermening, Stephan, Huseinovic, Angelina, Timmermans, Eric, Blits, Bas, and Verhaagen, Joost. 2010. “Comparison of AAV Serotypes for Gene Delivery to Dorsal Root Ganglion Neurons.” Molecular Therapy 18 (4): 715–24.CrossRefGoogle ScholarPubMed
Matthies, C., Thomas, S., Moshrefi, M., Lesinski-Schiedat, A., Frohne, C., Battmer, R.D., Lenarz, T., and Samii, M.. 2000. “Auditory Brainstem Implants: Current Neurosurgical Experiences and Perspective.” The Journal of Laryngology and Otology 27: 32–6.Google Scholar
Meng, Xiankai, Kozin, Elliott, Li, Gang Q., Eatock, Ruth Anne, Lee, Daniel, and Edge, Albert. 2014. “Adeno-Associated Virus Vector Delivery of Channelrhodopsin-2 Into Spiral Ganglion Neurons [Abstract].” Association for Research in Otolaryngology Abstracts Midwinter Meeting 2014, February.Google Scholar
Miller, Charles A., Abbas, Paul J., Robinson, Barbara K., Nourski, Kirill V., Zhang, Fawen, and Jeng, Fuh-Cherng. 2006. “Electrical Excitation of the Acoustically Sensitive Auditory Nerve: Single-Fiber Responses to Electric Pulse Trains.” Journal of the Association for Research in Otolaryngology 7 (3): 195210.CrossRefGoogle ScholarPubMed
Nevison, Barry, Laszig, Roland, Sollmann, Wolf-Peter, Lenarz, Thomas, Sterkers, Olivier, Ramsden, Richard, Fraysse, Bernard, et al., 2002. “Results from a European Clinical Investigation of the Nucleus Multichannel Auditory Brainstem Implant.” Ear and Hearing 23 (3): 170–83.CrossRefGoogle ScholarPubMed
Noij, Kimberley S., Kozin, Elliott D., Sethi, Rosh, Shah, Parth V., Kaplan, Alyson B., Herrmann, Barbara, Remenschneider, Aaron, and Lee, Daniel J.. 2015. “Systematic Review of Nontumor Pediatric Auditory Brainstem Implant Outcomes.” Otolaryngology–Head and Neck Surgery: Official Journal of American Academy of Otolaryngology-Head and Neck Surgery 153 (5): 739–50.CrossRefGoogle ScholarPubMed
Nussinovitch, Udi and Gepstein, Lior. 2015. “Optogenetics for In Vivo Cardiac Pacing and Resynchronization Therapies.” Nature Biotechnology 33 (7): 750–4.CrossRefGoogle ScholarPubMed
O’Donoghue, Gerard. 2013. “Cochlear Implants – Science, Serendipity, and Success.” New England Journal of Medicine 369 (13): 1190–3.Google ScholarPubMed
Otto, Steven R., Brackmann, Derald E., and Hitselberger, William. 2004. “Auditory Brainstem Implantation in 12- to 18-Year-Olds.” Archives of Otolaryngology – Head & Neck Surgery 130 (5): 656–9.CrossRefGoogle ScholarPubMed
Otto, Steven R., Shannon, Robert V., Wilkinson, Eric P., Hitselberger, William E., McCreery, Douglas B., Moore, Jean K., and Brackmann, Derald E.. 2008. “Audiologic Outcomes with the Penetrating Electrode Auditory Brainstem Implant.” Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 29 (8): 1147–54.CrossRefGoogle ScholarPubMed
Park, Sung Il, Brenner, Daniel S., Shin, Gunchul, Morgan, Clinton D., Copits, Bryan A., Chung, Ha Uk, Pullen, Melanie Y., et al. 2015. “Soft, Stretchable, Fully Implantable Miniaturized Optoelectronic Systems for Wireless Optogenetics.” Nature Biotechnology 33 (12): 1280–6.CrossRefGoogle ScholarPubMed
Peron, Simon and Svoboda, Karel. 2011. “From Cudgel to Scalpel: Toward Precise Neural Control with Optogenetics.” Nature Methods 8 (1): 30.CrossRefGoogle ScholarPubMed
Puram, Sidharth V., Barber, Samuel R., Kozin, Elliott D., Shah, Parth, Remenschneider, Aaron, Herrmann, Barbara S., Duhaime, Ann-Christine, Barker, Fred G., and Lee, Daniel J.. 2016. “Outcomes Following Pediatric Auditory Brainstem Implant Surgery: Early Experiences in a North American Center.” Otolaryngology – Head and Neck Surgery: Official Journal of American Academy of Otolaryngology – Head and Neck Surgery 155 (1): 133–8.CrossRefGoogle Scholar
Richter, Claus-Peter and Tan, Xiaodong. 2014. “Photons and Neurons.” Hearing Research 311: 7288.CrossRefGoogle ScholarPubMed
Richter, C.-P., Rajguru, S. M., Matic, A. I., Moreno, E. L., Fishman, A. J., Robinson, A. M., Suh, E., and Walsh, J. T.. 2011. “Spread of Cochlear Excitation during Stimulation with Pulsed Infrared Radiation: Inferior Colliculus Measurements.” Journal of Neural Engineering 8 (5): 56006.CrossRefGoogle ScholarPubMed
Sennaroğlu, Levent, Sennaroğlu, Gonca, Yücel, Esra, Bilginer, Burçak, Atay, Gamze, Bajin, M. Demir, Mocan, Burçe Özgen, et al., 2016. “Long-Term Results of ABI in Children With Severe Inner Ear Malformations.” Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 37 (7): 865–72.CrossRefGoogle ScholarPubMed
Shimano, T., Fyk-Kolodziej, B., Mirza, N., Asako, M., Tomoda, K., Bledsoe, S., Pan, Z.H., Molitor, S., and Holt, A.G.. 2013. “Assessment of the AAV-Mediated Expression of Channelrhodopsin-2 and Halorhodopsin in Brainstem Neurons Mediating Auditory Signaling.” Brain Research 1511: 138–52.CrossRefGoogle ScholarPubMed
Stickney, Ginger S., Loizou, Philipos C., Mishra, Lakshmi N., Assmann, Peter F., Shannon, Robert V., and Opie, Jane M.. 2006. “Effects of Electrode Design and Configuration on Channel Interactions.” Hearing Research 211 (1–2): 3345.CrossRefGoogle ScholarPubMed
Thompson, Alexander C., Fallon, James B., Wise, Andrew K., Wade, Scott A., Shepherd, Robert K., and Stoddart, Paul R.. 2015. “Infrared Neural Stimulation Fails to Evoke Neural Activity in the Deaf Guinea Pig Cochlea.” Hearing Research 324: 4653.CrossRefGoogle ScholarPubMed
Tian, Pengfei, McKendry, Jonathan J.D., Gu, Erdan, Chen, Zhizhong, Sun, Yongjian, Zhang, Guoyi, Dawson, Martin D., and Liu, Ran. 2016. “Fabrication, Characterization and Applications of Flexible Vertical InGaN Micro-Light Emitting Diode Arrays.” Optics Express 24 (1): 699707.CrossRefGoogle Scholar
Tye, Kay M. and Deisseroth, Karl. 2012. “Optogenetic Investigation of Neural Circuits Underlying Brain Disease in Animal Models.” Nature Reviews Neuroscience 13 (4): 251–66.CrossRefGoogle ScholarPubMed
Verma, Rohit U., Guex, Amélie A., Hancock, Kenneth E., Durakovic, Nedim, McKay, Colette M., Slama, Michaël C.C., Brown, M. Christian, and Lee, Daniel J.. 2014. “Auditory Responses to Electric and Infrared Neural Stimulation of the Rat Cochlear Nucleus.” Hearing Research 310: 6975.CrossRefGoogle ScholarPubMed
Waltzman, S.B., Cohen, N.L., and Roland, J.T.. 1999. “A Comparison of the Growth of Open-Set Speech Perception between the Nucleus 22 and Nucleus 24 Cochlear Implant Systems.” The American Journal of Otology 20 (4): 435–41.Google ScholarPubMed
Wells, Jonathon, Kao, Chris, Konrad, Peter, Milner, Tom, Kim, Jihoon, Mahadevan-Jansen, Anita, and Jansen, E. Duco. 2007a. “Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve.” Biophysical Journal 93 (7): 2567–80.CrossRefGoogle ScholarPubMed
Wells, Jonathon, Kao, Chris, Mariappan, Karthik, Albea, Jeffrey, Jansen, E. Duco, Konrad, Peter, and Anita, Mahadevan-Jansen. 2005. “Optical Stimulation of Neural Tissue In Vivo.” Optics Letters 30 (5): 504–6.CrossRefGoogle ScholarPubMed
Wells, Jonathon, Thomsen, Sharon, Whitaker, Peter, Jansen, E. Duco, Kao, Chris C., Konrad, Peter E., and Mahadevan-Jansen, Anita. 2007b. “Optically Mediated Nerve Stimulation: Identification of Injury Thresholds.” Lasers in Surgery and Medicine 39 (6): 513–26.CrossRefGoogle ScholarPubMed
Wilson, Blake S. 2013. “Toward Better Representations of Sound with Cochlear Implants.” Nature Medicine 19 (10): 1245–8.CrossRefGoogle ScholarPubMed
Wu, Zhijian, Yang, Hongyan, and Colosi, Peter. 2010. “Effect of Genome Size on AAV Vector Packaging.” Molecular Therapy 18 (1): 80–6.CrossRefGoogle ScholarPubMed
Yizhar, Ofer, Fenno, Lief E., Davidson, Thomas J., Mogri, Murtaza, and Deisseroth, Karl. 2011. “Optogenetics in Neural Systems.” Neuron 71 (1): 934.CrossRefGoogle ScholarPubMed
Zeltner, Brie. 2014. “University Hospitals, Cleveland Clinic Offer Rare Surgery to Profoundly Deaf Patients; Auditory Brainstem Implant Technology May Have More Uses in the Future.” Cleveland.com. March 24. http://www.cleveland.com/healthfit/index.ssf/2014/03/university_hospitals_cleveland_1.html.Google Scholar

References

Anikeeva, P., Andalman, A.S., Witten, I., Warden, M., Goshen, I., Grosenick, L., Gunaydin, L.A., Frank, L.M., Deisseroth, K., 2012. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15, 163170.CrossRefGoogle Scholar
Aravanis, A.M., Wang, L.-P., Zhang, F., Meltzer, L.A., Mogri, M.Z., Schneider, M.B., Deisseroth, K., 2007. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143S156.CrossRefGoogle ScholarPubMed
Bartels, M., Hernandez, V.H., Krenkel, M., Moser, T., Salditt, T., 2013. Phase contrast tomography of the mouse cochlea at microfocus x-ray sources. Appl. Phys. Lett. 103, 083703.CrossRefGoogle Scholar
Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K., 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 12631268.CrossRefGoogle ScholarPubMed
Brackmann, D.E., Hitselberger, W.E., Nelson, R.A., Moore, J., Waring, M.D., Portillo, F., Shannon, R.V., Telischi, F.F., 1993. Auditory brainstem implant: I. Issues in surgical implantation. Otolaryngol. Head Neck Surg. 108, 624633.CrossRefGoogle ScholarPubMed
Colletti, V., Shannon, R.V., Carner, M., Veronese, S., Colletti, L., 2009. Progress in restoration of hearing with the auditory brainstem implant. Prog. Brain Res. 175, 333345.CrossRefGoogle ScholarPubMed
Deisseroth, K., Feng, G., Majewska, A.K., Miesenböck, G., Ting, A., Schnitzer, M.J., 2006. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 1038010386.CrossRefGoogle ScholarPubMed
Donaldson, G.S., Kreft, H.A., Litvak, L., 2005. Place-pitch discrimination of single- versus dual-electrode stimuli by cochlear implant users (L). J. Acoust. Soc. Am. 118, 623626.CrossRefGoogle ScholarPubMed
Fetterman, B.L., Domico, E.H., 2002. Speech recognition in background noise of cochlear implant patients. Otolaryngol. Head Neck Surg. 126, 257263.CrossRefGoogle ScholarPubMed
Fishman, K.E., Shannon, R.V., Slattery, W.H., 1997. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. J. Speech Lang. Hear. Res. 40, 12011215.CrossRefGoogle ScholarPubMed
Friesen, L.M., Shannon, R.V., Baskent, D., Wang, X., 2001. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110, 11501163.CrossRefGoogle ScholarPubMed
Hernandez, V.H., Gehrt, A., Reuter, K., Jing, Z., Jeschke, M., Mendoza Schulz, A., Hoch, G., Bartels, M., Vogt, G., Garnham, C.W., Yawo, H., Fukazawa, Y., Augustine, G.J., Bamberg, E., Kügler, S., Salditt, T., de Hoz, L., Strenzke, N., Moser, T., 2014. Optogenetic stimulation of the auditory pathway. J. Clin. Invest. 124, 11141129.CrossRefGoogle ScholarPubMed
Herrmann, B.S., Brown, M.C., Eddington, D.K., Hancock, K.E., Lee, D.J., 2015. Auditory brainstem implant: electrophysiologic responses and subject perception. Ear Hear. 36, 368376.CrossRefGoogle ScholarPubMed
Hight, A.E., Kozin, E.D., Darrow, K., Lehmann, A., Boyden, E., Brown, M.C., Lee, D.J., 2015. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant. Hear. Res. 322, 235241.CrossRefGoogle Scholar
Hososhima, S., Yuasa, H., Ishizuka, T., Hoque, M.R., Yamashita, T., Yamanaka, A., Sugano, E., Tomita, H., Yawo, H., 2015. Near-infrared (NIR) up-conversion optogenetics. Sci. Rep. 5, 16533.CrossRefGoogle ScholarPubMed
Izzo, A.D., Richter, C.-P., Jansen, E.D., Walsh, J.T., 2006. Laser stimulation of the auditory nerve. Lasers Surg. Med. 38, 745753.CrossRefGoogle ScholarPubMed
Izzo, A.D., Walsh, J.T., Jansen, E.D., Bendett, M., Webb, J., Ralph, H., Richter, C.-P., 2007. Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength. IEEE Trans. Biomed. Eng. 54, 11081114.CrossRefGoogle ScholarPubMed
Izzo, A.D., Walsh, J.T., Ralph, H., Webb, J., Bendett, M., Wells, J., Richter, C.-P., 2008. Laser stimulation of auditory neurons: effect of shorter pulse duration and penetration depth. Biophys. J. 94, 31593166.CrossRefGoogle ScholarPubMed
Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., Morimoto, T.K., Chuong, A.S., Carpenter, E.J., Tian, Z., Wang, J., Xie, Y., Yan, Z., Zhang, Y., Chow, B.Y., Surek, B., Melkonian, M., Jayaraman, V., Constantine-Paton, M., Wong, G.K.-S., Boyden, E.S., 2014. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338346.CrossRefGoogle ScholarPubMed
Kleinlogel, S., Feldbauer, K., Dempski, R.E., Fotis, H., Wood, P.G., Bamann, C., Bamberg, E., 2011. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat. Neurosci. 14, 513518.CrossRefGoogle ScholarPubMed
Knöpfel, Boyden, 2012. Optogenetics: Tools for Controlling and Monitoring Neuronal Activity. Elsevier.Google Scholar
Kohlberg, G., Spitzer, J.B., Mancuso, D., Lalwani, A.K., 2014. Does cochlear implantation restore music appreciation? The Laryngoscope 124, 587588.CrossRefGoogle ScholarPubMed
Kral, A., Hartmann, R., Mortazavi, D., Klinke, R., 1998. Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hear. Res. 121, 1128.CrossRefGoogle ScholarPubMed
Littlefield, P.D., Vujanovic, I., Mundi, J., Matic, A.I., Richter, C.-P., 2010. Laser stimulation of single auditory nerve fibers. The Laryngoscope 120, 20712082.CrossRefGoogle ScholarPubMed
Miller, C.A., Abbas, P.J., Robinson, B.K., Nourski, K.V., Zhang, F., Jeng, F.-C., 2006. Electrical excitation of the acoustically sensitive auditory nerve: single-fiber responses to electric pulse trains. J. Assoc. Res. Otolaryngol. 7, 195210.CrossRefGoogle ScholarPubMed
Müller, M., von Hünerbein, K., Hoidis, S., Smolders, J.W.T., 2005. A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear. Res. 202, 6373.CrossRefGoogle ScholarPubMed
Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A.M., Bamberg, E., Hegemann, P., 2002. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 23952398.CrossRefGoogle ScholarPubMed
Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., Bamberg, E., 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. U. S. A. 100, 1394013945.CrossRefGoogle ScholarPubMed
Noij, K.S., Kozin, E.D., Sethi, R., Shah, P.V., Kaplan, A.B., Herrmann, B., Remenschneider, A., Lee, D.J., 2015. Systematic review of nontumor pediatric auditory brainstem implant outcomes. Otolaryngol. Head Neck Surg. 153, 739750.CrossRefGoogle ScholarPubMed
Park, S.I., Brenner, D.S., Shin, G., Morgan, C.D., Copits, B.A., Chung, H.U., Pullen, M.Y., Noh, K.N., Davidson, S., Oh, S.J., Yoon, J., Jang, K.-I., Samineni, V.K., Norman, M., Grajales-Reyes, J.G., Vogt, S.K., Sundaram, S.S., Wilson, K.M., Ha, J.S., Xu, R., Pan, T., Kim, T.-I., Huang, Y., Montana, M.C., Golden, J.P., Bruchas, M.R., Gereau, R.W., Rogers, J.A., 2015. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 12801286.CrossRefGoogle ScholarPubMed
Richter, C.-P., Bayon, R., Izzo, A.D., Otting, M., Suh, E., Goyal, S., Hotaling, J., Walsh, J.T., 2008. Optical stimulation of auditory neurons: effects of acute and chronic deafening. Hear. Res. 242, 4251.CrossRefGoogle ScholarPubMed
Richter, C.-P., Rajguru, S.M., Matic, A.I., Moreno, E.L., Fishman, A.J., Robinson, A.M., Suh, E., Walsh, J.T., 2011. Spread of cochlear excitation during stimulation with pulsed infrared radiation: inferior colliculus measurements. J. Neural Eng. 8, 056006.CrossRefGoogle ScholarPubMed
Schultz, M., Baumhoff, P., Maier, H., Teudt, I.U., Krüger, A., Lenarz, T., Kral, A., 2012. Nanosecond laser pulse stimulation of the inner ear-a wavelength study. Biomed. Opt. Express 3, 33323345.CrossRefGoogle ScholarPubMed
Shannon, R.V., 1983. Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction. Hear. Res. 12, 116.CrossRefGoogle ScholarPubMed
Shannon, R.V., Fayad, J., Moore, J., Lo, W.W., Otto, S., Nelson, R.A., O’Leary, M., 1993. Auditory brainstem implant: II. Postsurgical issues and performance. Otolaryngol. Head Neck Surg. 108, 634642.CrossRefGoogle ScholarPubMed
Shannon, R.V., Fu, Q.-J., Galvin, J., 2004. The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Otolaryngol. Suppl. 552, 5054.CrossRefGoogle Scholar
Shapiro, M.G., Homma, K., Villarreal, S., Richter, C.-P., Bezanilla, F., 2012. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3, 736.CrossRefGoogle ScholarPubMed
Shimano, T., Fyk-Kolodziej, B., Mirza, N., Asako, M., Tomoda, K., Bledsoe, S., Pan, Z.H., Molitor, S., Holt, A.G., 2013. Assessment of the AAV-mediated expression of channelrhodopsin-2 and halorhodopsin in brainstem neurons mediating auditory signaling. Brain Res. 1511, 138152.CrossRefGoogle ScholarPubMed
Sineshchekov, O.A., Jung, K.-H., Spudich, J.L., 2002. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A. 99, 86898694.CrossRefGoogle ScholarPubMed
Sousa, A.F., Carvalho, A.C., Couto, M.I., Tsuji, R.K., Goffi-Gomez, M.V., Bento, R.F., Matas, C.G., Befi-Lopes, D.M., 2015. Telephone Usage and Cochlear Implant: Auditory Training Benefits. Int. Arch. Otorhinolaryngol. 19, 269272.CrossRefGoogle ScholarPubMed
Srinivasan, A.G., Padilla, M., Shannon, R.V., Landsberger, D.M., 2013. Improving speech perception in noise with current focusing in cochlear implant users. Hear. Res. 299, 2936.CrossRefGoogle ScholarPubMed
Srinivasan, A.G., Shannon, R.V., Landsberger, D.M., 2012. Improving virtual channel discrimination in a multi-channel context. Hear. Res. 286, 1929.CrossRefGoogle Scholar
Teudt, I.U., Maier, H., Richter, C.-P., Kral, A., 2011. Acoustic events and “optophonic” cochlear responses induced by pulsed near-infrared laser. IEEE Trans. Biomed. Eng. 58, 16481655.CrossRefGoogle ScholarPubMed
Ting, J.T., Feng, G., 2013. Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience. Behav. Brain Res. 255, 318.CrossRefGoogle ScholarPubMed
Tomita, H., Sugano, E., Fukazawa, Y., Isago, H., Sugiyama, Y., Hiroi, T., Ishizuka, T., Mushiake, H., Kato, M., Hirabayashi, M., Shigemoto, R., Yawo, H., Tamai, M., 2009. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the Thy-1.2 promoter. PLoS One 4, e7679.CrossRefGoogle ScholarPubMed
Verma, R.U., Guex, A.A., Hancock, K.E., Durakovic, N., McKay, C.M., Slama, M.C.C., Brown, M.C., Lee, D.J., 2014. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus. Hear. Res. 310, 6975.CrossRefGoogle ScholarPubMed
Wang, H., Peca, J., Matsuzaki, M., Matsuzaki, K., Noguchi, J., Qiu, L., Wang, D., Zhang, F., Boyden, E., Deisseroth, K., Kasai, H., Hall, W.C., Feng, G., Augustine, G.J., 2007. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 104, 81438148.CrossRefGoogle ScholarPubMed
WHO, 2015. Deafness and hearing loss. [www document]. URL http://www.who.int/mediacentre/factsheets/fs300/en/.Google Scholar
Wu, C.-C., Luo, X., 2014. Electrode spanning with partial tripolar stimulation mode in cochlear implants. J. Assoc. Res. Otolaryngol. 15, 10231036.CrossRefGoogle ScholarPubMed
Wu, C.-M., Liu, T.-C., Wang, N.-M., Chao, W.-C., 2013. Speech perception and communication ability over the telephone by Mandarin-speaking children with cochlear implants. Int. J. Pediatr. Otorhinolaryngol. 77, 12951302.CrossRefGoogle ScholarPubMed
Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M., Deisseroth, K., 2011. Optogenetics in neural systems. Neuron 71, 934.CrossRefGoogle ScholarPubMed
Zeng, F.-G., Grant, G., Niparko, J., Galvin, J., Shannon, R., Opie, J., Segel, P., 2002. Speech dynamic range and its effect on cochlear implant performance. J. Acoust. Soc. Am. 111, 377386.CrossRefGoogle ScholarPubMed
Zeng, F.-G., Rebscher, S., Harrison, W., Sun, X., Feng, H., 2008. Cochlear implants: system design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115142.CrossRefGoogle ScholarPubMed
Zeng, F.-G., Tang, Q., Lu, T., 2014. Abnormal pitch perception produced by cochlear implant stimulation. PLoS One 9, e88662.CrossRefGoogle ScholarPubMed
Zierhofer, C.M., Hochmair-Desoyer, I.J., Hochmair, E.S., 1995. Electronic design of a cochlear implant for multichannel high-rate pulsatile stimulation strategies. IEEE Trans. Rehabil. Eng. 3, 112116.CrossRefGoogle Scholar

References

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.) Washington, DC.Google Scholar
Anderson, G., Feibel, F., & Cohen, D. (1987). Determination of serotonin in whole blood, platelet-rich plasma, platelet-poor plasma and plasma ultrafiltrate. Life Sciences, 40(11), 10631070.CrossRefGoogle ScholarPubMed
Arnold, G., Hyman, S., Mooney, R., & Kirby, R. (2003). Plasma amino acids profiles in children with autism: potential risk of nutritional deficiencies. Journal of Autism and Developmental Disorders, 33(4), 449454.CrossRefGoogle ScholarPubMed
Avruch, J., Long, X., Ortiz-Vega, S., Rapley, J., Papageorgiou, A., & Dai, N. (2009). Amino acid regulation of TOR complex 1. AJP: Endocrinology and Metabolism, 296(4), E592E602.Google ScholarPubMed
Balasubramanian, M., Butterworth, E., & Kilberg, M. (2013). Asparagine synthetase: regulation by cell stress and involvement in tumor biology. American Journal of Physiology: Endocrinology and Metabolism, 304(8), E789E799.Google ScholarPubMed
Chez, M., Buchanan, C., Bagan, B., Hammer, M., McCarthy, K., Ovrutskaya, I., et al. (2000). Secretin and autism: a two-part clinical investigation. Journal of Autism and Developmental Disorders, 30(2), 8794.CrossRefGoogle ScholarPubMed
Coutinho, A., Oliveira, G., Morgadinho, T., Fesel, C., Macedo, T., Bento, C., et al. (2004). Variants of the serotonin transporter gene (SLC6A4) significantly contribute to hyperserotonemia in autism. Molecular Psychiatry, 9(3), 264271.CrossRefGoogle ScholarPubMed
Daly, E., Ecker, C., Hallahan, B., Deeley, Q., Craig, M., Murphy, C., et al. (2014). Response inhibition and serotonin in autism: a functional MRI study using acute tryptophan depletion. Brain, 137(Pt 9), 26002610.CrossRefGoogle ScholarPubMed
Drabkin, H. & Rajbhandary, U. (1998). Initiation of protein synthesis in mammalian cells with codons other than AUG and amino acids other than methionine. Molecular and Cellular Biology, 18(9), 51405147.CrossRefGoogle ScholarPubMed
Evans, C., Dunstan, H., Rothkirch, T., Roberts, T., Reichelt, K., Cosford, R., et al. (2008). Altered amino acid excretion in children with autism. Nutritional Neuroscience, 11(1), 917.CrossRefGoogle ScholarPubMed
Fafournoux, P., Bruhat, A., & Jousse, C. (2000). Amino acid regulation of gene expression. Biochemical Journal, 351(Pt 1), 112.CrossRefGoogle ScholarPubMed
Fairclough, P., Hegarty, J., Silk, D., & Clark, M. (1980). Comparison of the absorption of two protein hydrolysates and their effects on water and electrolyte movements in the human jejunum. Gut, 21(10), 829834.CrossRefGoogle ScholarPubMed
Felig, P. (1975). Amino acid metabolism in man. Annual Review of Biochemistry, 44, 933955.CrossRefGoogle ScholarPubMed
First, M., Spitzer, R., Gibbon, M., & Williams, J. (2002). Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition. New York: Biometrics Research, New York State Psychiatric Institute.Google Scholar
Guesnet, P. & Alessandri, J. (2011). Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) – implications for dietary recommendations. Biochimie, 93(1), 712.CrossRefGoogle ScholarPubMed
Heil, M., Pearson, D., & Fallon, J. (2014). Low endogenous fecal chymotrypsin: a possible biomarker for autism. Poster presented at the annual IMFAR Conference on Autism, Atlanta, GA.Google Scholar
Matthews, D. (1972). Intestinal absorption of amino acids and peptides. Proceedings of the Nutrition Society, 31(2), 171177.CrossRefGoogle ScholarPubMed
McClung, C., Ulery, P., Perrotti, L., Zachariou, V., Berton, O., & Nestler, E. (2004). ΔFosB: a molecular switch for long-term adaptation in the brain. Molecular Brain Research, 132(2), 146154.CrossRefGoogle ScholarPubMed
McClung, C. & Nestler, E. (2003). Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nature Neuroscience, 6(11), 12081215.CrossRefGoogle ScholarPubMed
Morimoto, R. (2012). The heat shock response: Systems biology of proteotoxic stress in aging and disease. Cold Spring Harbor Symposia on Quantitative Biology, 76, 9199.CrossRefGoogle Scholar
Munasinghe, S., Oliff, C., Finn, J., & Wray, J. (2010). Digestive enzyme supplementation for autism spectrum disorders: A double-blind randomized controlled trial. Journal of Autism and Developmental Disorders, 40(9), 11311138.CrossRefGoogle ScholarPubMed
Naushad, S., Jain, J., Prasad, C., Naik, U., & Akella, R. (2013). Autistic children exhibit distinct plasma amino acid profile. Indian Journal of Biochemistry and Biophysics, 50(5), 474478.Google ScholarPubMed
Nestler, E. (2001). Molecular basis of long-term plasticity underlying addiction. Nature Reviews Neuroscience, 2(2), 119128.CrossRefGoogle ScholarPubMed
Nestler, E., Barrot, M., & Self, D. (2001). ΔFosB: a sustained molecular switch for addiction. Proceedings of the National Academy of Sciences, 98(20), 1104211046.CrossRefGoogle ScholarPubMed
Norton, L., & Layman, D. (2006). Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. The Journal of Nutrition, 136(2), 533S537S.CrossRefGoogle ScholarPubMed
Patton, J., Stanford, M., & Barratt, E. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51, 768774.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Rivest, J., Bernier, J., & Pomar, C. (2000). A dynamic model of protein digestion in the small intestine of pigs. Journal of Animal Science, 78, 328–240.CrossRefGoogle ScholarPubMed
Robinson, T. & Berridge, K. (2001). Incentive-sensitization and addiction. Addiction, 96(1), 103114.CrossRefGoogle ScholarPubMed
Schain, R., & Freedman, D. (1961). Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. The Journal of Pediatrics, 58, 315320.CrossRefGoogle ScholarPubMed
Schedl, H., Pierce, C., Rider, A., & Clifton, J. (1968). Absorption of L-methionine from the human small intestine. Journal of Clinical Investigation, 47(2), 417425.CrossRefGoogle ScholarPubMed
Tang, G., Gudsnuk, K., Kuo, S., Cotrina, M., Rosoklija, G., Sosunov, A., et al. (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron, 83(5), 14821482.CrossRefGoogle ScholarPubMed
Williams, K., Wheeler, D., Silove, N., & Hazell, P. (2013). Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD). The Cochrane Database of Systematic Reviews, 8, CD004677.Google Scholar

References

Adamantidis, A., Arber, S., Bains, J. S., Bamberg, E., Bonci, A., Buzsáki, G., et al. 2015. Optogenetics: 10 years after ChR2 in neurons – views from the community. Nature Neuroscience, 18(9): 12021212.CrossRefGoogle ScholarPubMed
Brewer, C. D. & Nicolai, E., 2014. Reassessing the ethical importance of efficacy and autonomy in optogenetics trials. AJOB Neuroscience, 5(3): 1618.CrossRefGoogle Scholar
Canli, T., 2015. Neurogenethics: an emerging discipline at the intersection of ethics, neuroscience, and genomics. Applied & Translational Genomics, 5: 1822.CrossRefGoogle ScholarPubMed
Cavanaugh, J., Monosov, I. E., McAlonan, K., Berman, R., Smith, M. K., Cao, V., et al. 2012. Optogenetic inactivation modifies monkey visuomotor behavior. Neuron, 76(5): 901907.CrossRefGoogle ScholarPubMed
Chen, B. T., Yau, H.-J., Hatch, C., Kusumoto-Yoshida, I, Cho, S. L., Hopf, W., et al. 2013. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature, 496: 359364.CrossRefGoogle ScholarPubMed
Covington, H. E., Lobo, M. K., Maze, I., Vialou, V., Hyman, J. M., Zaman, S., et al. 2010. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. Journal of Neuroscience, 30(48): 1608216090.CrossRefGoogle ScholarPubMed
Deisseroth, K., 2012. Optogenetics and psychiatry: applications, challenges, and opportunities. Biological Psychiatry, 71: 10301032.CrossRefGoogle ScholarPubMed
Diester, I., Kaufman, M. T., Mogri, M., Pashaie, R., Goo, W., Yizhar, O., et al. 2011. An optogenetic tool box designed for primates. Nature Neuroscience, 14(3): 387397.CrossRefGoogle Scholar
Gilbert, F., Harris, A. R., & Kapsa, R. M. I. 2014. Controlling brain cells with light: ethical considerations for optogenetic clinical trials. AJOB Neuroscience 5(3): 311.CrossRefGoogle Scholar
Gradinaru, V. 2013. Optogenetics to benefit human health: opportunities and challenges. In: Hegemann, P. & Sigrist, S. (Eds.): Optogenetics. Berlin & Boston: De Gruyter: 127131.CrossRefGoogle Scholar
Hess, P., 2014. The ethical dilemmas of experimental invasive brain technology. AJOB Neuroscience, 5(3): 1820.CrossRefGoogle Scholar
Kravitz, A. V., Freeze, B. S., Parker, P. R., Kay, K., Thwin, M. T., Deisseroth, K., et al. 2010. Regulation of parkinsonian motor behaviours by optogenetic control of basalganglia circuitry. Nature, 466: 622626.CrossRefGoogle Scholar
LaLumiere, R. T., 2011. A new technique for controlling the brain: optogenetics and its potential for the use in research and the clinic. Brain Stimulation, 4: 16.CrossRefGoogle ScholarPubMed
Lidz, C. W., Appelbaum, P. S., Grisso, T., & Renaud, M. 2004. Therapeutic misconception and the appreciation of risks in clinical trials. Social Science & Medicine, 58: 16891697.CrossRefGoogle ScholarPubMed
Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., et al. 2012. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484: 381385.CrossRefGoogle ScholarPubMed
Maslen, H. & Savulescu, J., 2014. First Phase 1 optogenetics trials should be conducted in people who are dying. AJOB Neuroscience, 5(3): 1618.CrossRefGoogle Scholar
Müller, S. & Walter, H., 2014. Neither speculative nor narrow-minded ethics is needed for optogenetics-based DBS in psychiatry and neurology. AJOB Neuroscience, 5(3): 1220.CrossRefGoogle Scholar
Okano, H., Miyawaki, A., & Kasai, K., 2015. Brain/MINDS: brain-mapping project in Japan. Phil. Trans. R. Soc. B, 370: 20140310.CrossRefGoogle ScholarPubMed
Pama, E. A. C., Colzato, L. S., & Hommel, B., 2013. Optogenetics as a neuromodulation tool in cognitive neuroscience. Frontiers in Psychology, 4: 610.CrossRefGoogle ScholarPubMed
Pastrana, E., 2011. Nature methods primer: optogenetics: controlling cell function with light. Nature Methods, 8(1): 2425.CrossRefGoogle Scholar
Schleiermacher, S., 2013. History in the making: the ethics of optogenetics. In: Hegemann, P. & Sigrist, S. (Eds.): Optogenetics. Berlin & Boston: De Gruyter: 199200.Google Scholar
Sturm, V., 2013. Potential of optogenetics in deep brain stimulation. In: Hegemann, P. & Sigrist, S. (Eds.): Optogenetics. Berlin & Boston: De Gruyter: 157160.CrossRefGoogle Scholar
Yoon, H. H., Min, J., Hwang, E., Lee, C. J., Suh, J.-K., Hwang, O., et al. 2016. Optogenetic inhibition of the subthalamic nucleus reduces levodopa-induced dyskinesias in a rat model of Parkinson’s disease. Stereotactic and Functional Neurosurgery, 94: 4153.CrossRefGoogle Scholar
Walter, H. & Müller, S., 2013. Optogenetics as a new therapeutic tool in medicine? A view from the principles of biomedical ethics. In: Hegemann, P. & Sigrist, S. (Eds.): Optogenetics. Berlin & Boston: De Gruyter: 201211.CrossRefGoogle Scholar
Zhang, F., Gradinaru, V., Adamantidis, A. R., Durand, R., Airan, R. D., de Lecea, L., et al. 2010. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nature Protocols, 5: 439456.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×