Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-01T14:25:11.374Z Has data issue: false hasContentIssue false

Part V - Optogenetics in Vision Restoration and Memory

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 325 - 404
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Azeredo da Silveira, R, Roska, B. 2011. Cell types, circuits, computation. Curr Opin Neurobiol 21: 664671.CrossRefGoogle ScholarPubMed
Bainbridge, JW, Smith, AJ, Barker, SS, Robbie, S, Henderson, R, et al. 2008. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358: 22312239.CrossRefGoogle ScholarPubMed
Bi, A, Cui, J, Ma, YP, Olshevskaya, E, Pu, M, et al. 2006. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50: 2333.CrossRefGoogle Scholar
Busskamp, V, Duebel, J, Balya, D, Fradot, M, Viney, TJ, et al. 2010. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329: 413417.CrossRefGoogle ScholarPubMed
Busskamp, V, Picaud, S, Sahel, JA, Roska, B. 2012. Optogenetic therapy for retinitis pigmentosa. Gene Ther 19: 169175.CrossRefGoogle ScholarPubMed
Busskamp, V, Roska, B. 2011. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Curr Opin Neurobiol 21: 942946.CrossRefGoogle ScholarPubMed
Chuong, AS, Miri, ML, Busskamp, V, Matthews, GA, Acker, LC, et al. 2014. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17: 11231129.CrossRefGoogle Scholar
Cideciyan, AV, Aleman, TS, Boye, SL, Schwartz, SB, Kaushal, S, et al. 2008. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A 105: 1511215117.CrossRefGoogle ScholarPubMed
Dalkara, D, Byrne, LC, Klimczak, RR, Visel, M, Yin, L, et al. 2013. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5: 189ra76.CrossRefGoogle ScholarPubMed
Greenberg, KP, Pham, A, Werblin, FS. 2011. Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron 69: 713720.CrossRefGoogle ScholarPubMed
Hadjinicolaou, AE, Meffin, H, Maturana, MI, Cloherty, SL, Ibbotson, MR. 2015. Prosthetic vision: devices, patient outcomes and retinal research. Clin Exp Optom 98: 395410.CrossRefGoogle ScholarPubMed
Han, Z, Conley, SM, Makkia, RS, Cooper, MJ, Naash, MI. 2012. DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice. J Clin Invest 122: 32213226.CrossRefGoogle ScholarPubMed
Hauswirth, WW, Aleman, TS, Kaushal, S, Cideciyan, AV, Schwartz, SB, et al. 2008. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a Phase I trial. Hum Gene Ther 19: 979990.CrossRefGoogle ScholarPubMed
Hendrickson, A. 1992. A morphological comparison of foveal development in man and monkey. Eye (Lond) 6(Pt 2): 136144.CrossRefGoogle Scholar
Humayun, MS, Dorn, JD, da Cruz, L, Dagnelie, G, Sahel, JA, et al. 2012. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology 119: 779788.CrossRefGoogle ScholarPubMed
Jiang, C, Moore, MJ, Zhang, X, Klassen, H, Langer, R, Young, M. 2007. Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol Vis 13: 17831792.Google Scholar
Kienle, E, Senis, E, Borner, K, Niopek, D, Wiedtke, E, et al. 2012. Engineering and evolution of synthetic adeno-associated virus (AAV) gene therapy vectors via DNA family shuffling. J Vis Exp 62: 3819.Google Scholar
Kleinlogel, S, Feldbauer, K, Dempski, RE, Fotis, H, Wood, PG, et al. 2011. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci 14: 513518.CrossRefGoogle ScholarPubMed
Lagali, PS, Balya, D, Awatramani, GB, Munch, TA, Kim, DS, et al. 2008. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11: 667675.CrossRefGoogle Scholar
Lorach, H, Goetz, G, Mandel, Y, Lei, X, Kamins, TI, et al. 2015. Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration. Vision Res 111: 142148.CrossRefGoogle ScholarPubMed
Maguire, AM, Simonelli, F, Pierce, EA, Pugh, EN Jr., Mingozzi, F, et al. 2008. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358: 22402248.CrossRefGoogle ScholarPubMed
Ong, JM, da Cruz, L. 2012. A review and update on the current status of stem cell therapy and the retina. Br Med Bull 102: 133146.CrossRefGoogle ScholarPubMed
Packer, AM, Roska, B, Hausser, M. 2013. Targeting neurons and photons for optogenetics. Nat Neurosci 16: 805815.CrossRefGoogle Scholar
Pelli, DG, Bex, P. 2013. Measuring contrast sensitivity. Vision Res 90: 1014.CrossRefGoogle ScholarPubMed
Sahel, JA, Roska, B. 2013. Gene therapy for blindness. Annu Rev Neurosci 36: 467488.CrossRefGoogle ScholarPubMed
Schuchard, RA. 2005. Preferred retinal loci and macular scotoma characteristics in patients with age-related macular degeneration. Can J Ophthalmol 40: 303312.CrossRefGoogle ScholarPubMed
Singh, MS, MacLaren, RE. 2011. Stem cells as a therapeutic tool for the blind: biology and future prospects. Proc Biol Sci 278: 30093016.Google ScholarPubMed
Tibbetts, MD, Samuel, MA, Chang, TS, Ho, AC. 2012. Stem cell therapy for retinal disease. Curr Opin Ophthalmol 23: 226234.CrossRefGoogle ScholarPubMed
Wu, C, Ivanova, E, Zhang, Y, Pan, ZH. 2013. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS One 8: e66332.CrossRefGoogle Scholar
Zrenner, E, Bartz-Schmidt, KU, Benav, H, Besch, D, Bruckmann, A, et al. 2011. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278: 14891497.Google ScholarPubMed

References

Audet, M., & Bouvier, M. (2012). Restructuring G-protein-coupled receptor activation. Cell, 151, 1423.CrossRefGoogle Scholar
Bi, A., Cui, J., Ma, Y., et al. (2006). Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron, 50(1), 2333.CrossRefGoogle Scholar
Busskamp, V., Duebel, J., Balya, D., et al. (2010). Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science, 329(5990), 413417.CrossRefGoogle ScholarPubMed
Busskamp, V., Krol, J., Nelidova, D., et al. (2014). miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function. Neuron, 83, 586600.CrossRefGoogle ScholarPubMed
Cao, P., Sun, W., Kramp, K., et al. (2012). Light-sensitive coupling of rhodopsin and melanopsin to G(i/o) and G(q) signal transduction in Caenorhabditis elegans. FASEB J, 26, 480491CrossRefGoogle Scholar
Caporale, N., Kolstad, K., Lee, T., et al. (2011). LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther, 19, 12121219.CrossRefGoogle ScholarPubMed
Cehajic-Kapetanovic, J., Eleftheriou, C., Allen, A., et al. (2015). Restoration of vision with ectopic expression of human rod opsin. Curr Biol, 25, 21112122.CrossRefGoogle Scholar
Chang, B., Hawes, N., Hurd, R., et al. (2002). Retinal degeneration mutants in the mouse. Vision Res, 42, 517525.CrossRefGoogle ScholarPubMed
Choe, H., Kim, Y., Park, J., et al. (2011). Crystal structure of metarhodopsin II. Nature, 471, 651655.CrossRefGoogle ScholarPubMed
Cotecchia, S., Exum, S., Caron, M., et al. (1990). Regions of the alpha 1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc Natl Acad Sci U S A, 87, 28962900.CrossRefGoogle ScholarPubMed
European Parliament, Council of the European Commission (2006). Directive 2006/25/EC of the European Parliament and of the Council on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (artificial optical radiation) 19th individual directive within the meaning of Article 16(1) of Directive 89/391/EEC). Off. J. Eur. Union 114, 3859.Google Scholar
Cronin, T., Vandenberghe, L., Hantz, P., et al. (2014). Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med, 6, 11751190.CrossRefGoogle ScholarPubMed
Dhingra, A., Faurobert, E., Dascal, N., et al. (2004). A retinal-specific regulator of G-protein signaling interacts with Gαo and accelerates an expressed metabotropic glutamate receptor 6 cascade. J Neurosci, 24, 56845693.CrossRefGoogle ScholarPubMed
Doré, A., Okrasa, K., Patel, J., et al. (2014). Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature, 511, 557562.CrossRefGoogle Scholar
Doroudchi, M., Greenberg, K., & Liu, J. (2011). Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther, 19, 12201229.CrossRefGoogle ScholarPubMed
Euler, T., Havekamp, S., Schubert, T., et al. (2014). Retinal bipolar cells: elementary building blocks of vision. Nature Rev, 15 (507519)CrossRefGoogle Scholar
Feldbauer, K., Zimmermann, D., Pintschovius, V., et al. (2009). Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci USA, 106, 1231712322.CrossRefGoogle Scholar
Gaub, B., Berry, M., Holt, A., et al. (2015). Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol Ther, 23(10), 15621571.CrossRefGoogle ScholarPubMed
Gaub, B., Berry, M., Holt, A., et al. (2014). Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc Natl Acad Sci U S A, 111, E55745583.CrossRefGoogle ScholarPubMed
Greenberg, K., Pham, A., & Werblin, F. (2011). Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of centre–surround antagonism. Neuron, 69, 713720.CrossRefGoogle Scholar
Hampson, D., Rose, E., & Antflick, J. (2008). The Structures of Metabotropic Glutamate Receptors. (pp. 363386). Totowa, NJ: Human Press.CrossRefGoogle Scholar
Hattar, S., Liao, H., Takao, M., et al. (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science, 295, 10651070.CrossRefGoogle Scholar
Hollenstein, K., Kean, J., Bortolato, A., et al. (2013). Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature, 499, 438443.CrossRefGoogle Scholar
Kalatsky, V., & Stryker, M. (2003). New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neruon, 38, 529545.Google ScholarPubMed
Keeler, C. (1966). Retinal degeneration in the mouse is rodless retina. J Hered, 57(2), 4750.CrossRefGoogle ScholarPubMed
Kim, D.S., Matsuda, T., & Cepko, C.L. (2008). A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J Neurosci, 28(31), 77487764.CrossRefGoogle ScholarPubMed
Kleinlogel, S., Feldbauer, K., Dempski, R., et al. (2011). Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci, 14(4), 513518.CrossRefGoogle ScholarPubMed
Kobilka, B., Kobilka, T., Daniel, K., et al. (1988). Chimeric alpha 2-beta 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science, 240, 13101316.CrossRefGoogle Scholar
Koyanagi, M., & Terakita, A. (2014). Diversity of animal opsin-based pigments and their optogenetic potential. Biochim Biophys Acta, 1837, 710716.CrossRefGoogle Scholar
Lagali, P., Balya, D., Awatramani, G., et al. (2008). Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration Nat Neurosci, 11(6), 667675.CrossRefGoogle Scholar
Lin, B., Koizumi, A., Tanaka, N., et al. (2008). Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA, 105, 1600916014.CrossRefGoogle ScholarPubMed
Macé, E., Caplette, R., Marre, O., et al. (2015). Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV Restores ON and OFF visual responses in blind mice. Mol Ther, 23, 716.CrossRefGoogle ScholarPubMed
Mariani, A. (1984). Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature, 308, 184186.CrossRefGoogle ScholarPubMed
Masuho, I., Celver, J., Kovoor, A., et al. (2010). Membrane anchor R9AP potentiates GTPase-accelerating protein activity of RGS11·Gβ5 complex and accelerates Inactivation of the mGluR6-Go signaling. J Biol Chem, 285, 47814787.CrossRefGoogle Scholar
Morgans, C., Zhang, J., Jeffrey, B., et al. (2009). TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc Natl Acad Sci USA 106, 1917419178.CrossRefGoogle ScholarPubMed
Nagel, G. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA, 100, 1394013945.CrossRefGoogle ScholarPubMed
Neitz, J., & Neitz, M. (2011). The genetics of normal and defective color vision. Vision Res, 51, 633651.CrossRefGoogle ScholarPubMed
Nirenberg, S., & Meister, M. (1997). The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron, 18, 637650.CrossRefGoogle ScholarPubMed
Pan, Z., Ganjawala, T., Lu, Q., et al. (2014). ChR2 mutants at L132 and T159 with improved operational light sensitivity for vision restoration. PLoS ONE, 9, e98924.CrossRefGoogle ScholarPubMed
Pin, J., Galvez, T., & Prézeau, L. (2003). Evolution, structure and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther, 98, 325354.CrossRefGoogle Scholar
Polosukhina, A., Litt, J., Tochitsky, I., et al. (2012). Photochemical restoration of visual responses in blind mice. Neuron, 75(2), 271282.CrossRefGoogle ScholarPubMed
Prusky, G., Alam, N., Beekman, S., et al. (2004). Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Opthalmol Vis Sci, 45, 46114616.CrossRefGoogle ScholarPubMed
Puller, C., & Haverkamp, S. (2011). Bipolar cell pathways for color vision in non-primate dichromats. Vis Neurosci, 28, 5160.CrossRefGoogle ScholarPubMed
Rasmussen, S., DeVree, B., Zou, Y., et al. (2011). Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature, 477, 549555.CrossRefGoogle ScholarPubMed
Remé, C., Grimm, C., Hafezi, F., et al. (1998). Apoptotic cell death in retinal degenerations. Prog Retin Eye Res, 17, 443464.CrossRefGoogle ScholarPubMed
Schiöth, H., & Frederiksson, R. (2005). The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol, 142, 94101.CrossRefGoogle ScholarPubMed
Schwartz, T., Frimurer, T., Holst, B., et al. (2006). Molecular mechanism of 7TM receptor activation – a global toggle switch model. Annu Rev Pharmacol Toxicol, 46, 481519.CrossRefGoogle ScholarPubMed
Sekharan, S., Wei, J., & Batista, V. (2012). The active site of melanopsin: the biological clock photoreceptor. J Am Chem Soc, 134, 1953619539.CrossRefGoogle ScholarPubMed
Sexton, T., Buhr, E., & Van Gelder, R. (2012). Melanopsin and mechanisms of non-visual ocular photoreception. J Biol Chem, 287, 16491656.CrossRefGoogle ScholarPubMed
Strettoi, E., & Pignatelli, V. (2000). Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA, 97, 1102011025.CrossRefGoogle Scholar
Swift, S., Leger, A., Talavera, J., et al. (2006). Role of the PAR1 receptor 8th helix in signaling: the 7-8-1 receptor activation mechanism. J Biol Chem, 281, 41094116.CrossRefGoogle ScholarPubMed
The Lasker/IRRF Initiative for Innovation in Vision Science (2014). Restoring Vision to the Blind: The Lasker/IRRF Initiative for Innovation in Vision Science. Transl Vis Sci Technol, 3(7), 1.CrossRefGoogle Scholar
Thyagarajan, S., van Wyk, M., Lehmann, K., et al. (2010). Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci, 30(26), 87458758.CrossRefGoogle ScholarPubMed
Tochitsky, I., Polosukhina, A., Degtyar, V., et al. (2014). Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron, 81, 800813.CrossRefGoogle ScholarPubMed
van Wyk, M., Pielecka-Fortuna, J., Löwel, S., et al. (2015). Restoring the ON-switch in blind retinas: Opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol, 13 (5), e1002143.CrossRefGoogle ScholarPubMed
Verrall, S., Ishii, M., Chen, M., et al. (1997). The thrombin receptor second cytoplasmic loop confers coupling to Gq-like G proteins in chimeric receptors. Additional evidence for a common transmembrane signaling and G protein coupling mechanism in G protein-coupled receptors. J Biol Chem, 272, 68986902.CrossRefGoogle Scholar
Wässle, H. (2004). Parallel processing in the mammalian retina. Nat Rev Neurosci, 5, 747757.CrossRefGoogle ScholarPubMed
Wu, C., Ivanova, E., Zhang, Y., et al. (2013). rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS ONE, 8, e66332.CrossRefGoogle ScholarPubMed
Yamashita, T., Terakita, A., & Shichida, Y. (2001). The second cytoplasmic loop of metabotropic glutamate receptor functions at the third loop position of rhodopsin. J Biochem, 130, 149155.CrossRefGoogle ScholarPubMed
Yau, K., & Hardie, R. (2009). Phototransduction motifs and variations. Cell, 139, 246264.CrossRefGoogle ScholarPubMed
Zrenner, E., Bartz-Schmidt, K., Benav, H., et al. (2011). Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci, 278, 14891497.Google ScholarPubMed

References

Aït-Ali, N., Fridlich, R., Millet-Puel, G. et al. (2015). Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell, 161, 817832.CrossRefGoogle Scholar
Bartsch, U., Oriyakhel, W., Kenna, P.F. et al. (2008). Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp. Eye Res., 86, 691700.CrossRefGoogle ScholarPubMed
Bertschinger, D.R., Beknazar, E., Simonutti, M. et al. (2008). A review of in vivo animal studies in retinal prosthesis research. Graefes Arch. Clin. Exp. Ophthalmol., 246, 15051517.CrossRefGoogle ScholarPubMed
Bi, A., Cui, J., Ma, Y.-P. et al. (2006). Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron, 50, 2333.CrossRefGoogle ScholarPubMed
Busskamp, V., Duebel, J., Balya, D. et al. (2010). Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science, 329, 413417.CrossRefGoogle ScholarPubMed
Caporale, N., Kolstad, K.D., Lee, T. et al. (2011). LiGluR restores visual responses in rodent models of inherited blindness. Mol. Ther. J. Am. Soc. Gene Ther., 19, 12121219.CrossRefGoogle ScholarPubMed
Cehajic-Kapetanovic, J., Eleftheriou, C., Allen, A.E. et al. (2015). Restoration of vision with ectopic expression of human rod opsin. Curr. Biol., 25, 21112122.CrossRefGoogle ScholarPubMed
Cha, K., Horch, K.W., Normann, R.A., (1992a). Mobility performance with a pixelized vision system. Vision Res., 32, 13671372.CrossRefGoogle ScholarPubMed
Cha, K., Horch, K.W., Normann, R.A. et al. (1992b). Reading speed with a pixelized vision system. J. Opt. Soc. Am. A., 9, 673677.CrossRefGoogle ScholarPubMed
Chuang, A.T., Margo, C.E., Greenberg, P.B. (2014). Retinal implants: a systematic review. Br. J. Ophthalmol., 98, 852856.CrossRefGoogle ScholarPubMed
Cideciyan, A.V., Hauswirth, W.W., Aleman, T.S. et al. (2009). Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum. Gene Ther., 20, 9991004.CrossRefGoogle ScholarPubMed
Cronin, T., Vandenberghe, L.H., Hantz, P. et al. (2014). Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol. Med. 6, 11751190.CrossRefGoogle ScholarPubMed
da Cruz, L., Coley, B.F., Dorn, J. et al. (2013). The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br. J. Ophthalmol., 97, 632636.CrossRefGoogle ScholarPubMed
Daiger, S.P., Sullivan, L.S., Bowne, S.J., (2013). Genes and mutations causing retinitis pigmentosa. Clin. Genet. 84, 132141.CrossRefGoogle ScholarPubMed
Doroudchi, M.M., Greenberg, K.P., Liu, J. et al. (2011). Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol. Ther., 19, 12201229.CrossRefGoogle ScholarPubMed
Ernst, O.P., Lodowski, D.T., Elstner, M. et al. (2014). Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev., 114, 126163.CrossRefGoogle ScholarPubMed
Gaub, B.M., Berry, M.H., Holt, A.E. et al. (2015). Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol. Ther., 23, 15621571.CrossRefGoogle ScholarPubMed
Gaub, B.M., Berry, M.H., Holt, A.E. et al. (2014). Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc. Natl. Acad. Sci. U. S. A., 111, E5574E5583.CrossRefGoogle ScholarPubMed
GenVec, (2011). Study of AdGVPEDF.11D in neovascular age-related macular degeneration (AMD). URL https://clinicaltrials.gov/ct2/show/NCT00109499Google Scholar
Greenberg, K.P., Pham, A., Weblin, F.S. (2011). Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron, 69, 713720.CrossRefGoogle ScholarPubMed
Haupts, U., Tittor, J., Bamberg, E. et al. (1997). General concept for ion translocation by halobacterial retinal proteins: the isomerization/switch/transfer (IST) model. Biochemistry, 36, 27.CrossRefGoogle ScholarPubMed
Holz, F.G., Schmitz-Valckenberg, S., Fleckenstein, M., (2014). Recent developments in the treatment of age-related macular degeneration. J. Clin. Invest., 124, 14301438.CrossRefGoogle ScholarPubMed
Humayun, M.S., Dorn, J.D., da Cruz, L. et al. (2012). Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology, 119, 779788.CrossRefGoogle ScholarPubMed
International Commission on Non-Ionizing Radiation Protection, (2013). ICNIRP guidelines on limits of exposure to incoherent visible and infrared radiation. Health Phys. 105, 7496.CrossRefGoogle Scholar
Ivanova, E., Hwang, G.-S., Pan, Z.-H. et al. (2010). Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Invest. Ophthalmol. Vis. Sci., 51, 52885296.CrossRefGoogle ScholarPubMed
Ivanova, E., Pan, Z.-H., (2009). Evaluation of the adeno-associated virus mediated long-term expression of channelrhodopsin-2 in the mouse retina. Mol. Vis., 15, 16801689.Google ScholarPubMed
Jones, B., Pfeiffer, R., Ferrell, W. et al. (2016). Retinal remodeling in human retinitis pigmentosa. Exp. Eye Res., 150, 149165.CrossRefGoogle ScholarPubMed
Klapoetke, N.C., Murata, Y., Kim, S.S. et al. (2014). Independent optical excitation of distinct neural populations. Nat. Methods, 11, 338346.CrossRefGoogle ScholarPubMed
Kleinlogel, S., Feldbauer, K., Dempski, R.E. et al. (2011). Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat. Neurosci., 14, 513518.CrossRefGoogle ScholarPubMed
Lagali, P.S., Balya, D., Awatramani, G.B. et al. (2008). Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci., 11, 667675.CrossRefGoogle Scholar
Lamba, D., Gust, J., Reh, T., (2009). Transplantation of human embryonic stem cells derived photoreceptors restores some visual function in Crx deficient mice. Cell Stem Cell, 4, 7379.CrossRefGoogle ScholarPubMed
Léveillard, T., Mohand-Saïd, S., Lorentz, O. et al. (2004). Identification and characterization of rod-derived cone viability factor. Nat. Genet., 36, 755759.CrossRefGoogle ScholarPubMed
Lim, L.S., Mitchell, P., Seddon, J.M. et al. (2012). Age-related macular degeneration. Lancet Lond. Engl., 379, 17281738.CrossRefGoogle ScholarPubMed
Lin, B., Koizumi, A., Tanaka, N. et al. (2008). Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc. Natl. Acad. Sci. U. S. A., 105, 1600916014.CrossRefGoogle ScholarPubMed
Lin, J.Y., Knutsen, P.M., Muller, A. et al. (2013). ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci., 16, 14991508.CrossRefGoogle ScholarPubMed
Lorach, H., Benosman, R., Marre, O. et al. (2012). Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device. J. Neural Eng., 9, 066004.CrossRefGoogle ScholarPubMed
Lorach, H., Goetz, G., Smith, R. et al. (2015). Photovoltaic restoration of sight with high visual acuity. Nat. Med., 21, 476482.CrossRefGoogle Scholar
Macé, E., Caplette, R., Marre, O. et al. (2015). Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol. Ther., 23, 716.CrossRefGoogle ScholarPubMed
MacLaren, R.E., Groppe, M., Barnard, A.R. et al. (2014). Retinal gene therapy in patients with choroideremia: initial findings from a Phase 1/2 clinical trial. Lancet, 383, 11291137.CrossRefGoogle ScholarPubMed
MacLaren, R.E., Pearson, R.A., MacNeil, A. et al. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature, 444, 203207.CrossRefGoogle ScholarPubMed
Masu, M., Iwakabe, H., Tagawa, Y. et al. (1995). Specific deficit of the ON response in visual transmission by targeted disruption of the mGIuR6 gene. Cell, 80, 757765.CrossRefGoogle ScholarPubMed
Polosukhina, A., Litt, J., Tochitsky, I. et al. (2012). Photochemical restoration of visual responses in blind mice. Neuron, 75, 271282.CrossRefGoogle ScholarPubMed
RetroSense Therapeutics, (2016). RST-001 Phase I/II trial for retinitis pigmentosa. URL https://clinicaltrials.gov/ct2/show/NCT02556736?term=optogenetic&rank=1Google Scholar
Sanofi, (2015). Phase I/IIa study of SAR422459 in patients with Stargardt’s macular degeneration. URL https://clinicaltrials.gov/ct2/show/NCT01367444Google Scholar
Sanofi, (2016). Study of UshStat in patients with retinitis pigmentosa associated with usher syndrome type 1B. URL https://clinicaltrials.gov/ct2/show/NCT01505062Google Scholar
Santos, A., Humayun, M.S., de Juan, E. et al. (1997). Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch. Ophthalmol., 115, 511515.CrossRefGoogle ScholarPubMed
Schiller, P., Sandell, J., Maunsell, J. (1986). Functions of the ON and OFF channels of the visual system. Nature, 322, 824825.CrossRefGoogle ScholarPubMed
Sommerhalder, J., Rappaz, B., de Haller, R. et al. (2004). Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task. Vision Res., 44, 16931706.CrossRefGoogle ScholarPubMed
Tochitsky, I., Polosukhina, A., Degtyar, V.E. et al. (2014). Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron, 81, 800813.CrossRefGoogle ScholarPubMed
Tomita, H., Sugano, E., Isago, H. et al. (2010). Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp. Eye Res., 90, 429436.CrossRefGoogle ScholarPubMed
Tomita, H., Sugano, E., Murayama, N. et al. (2014). Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1. Mol. Ther., 22, 14341440.CrossRefGoogle ScholarPubMed
Tomita, H., Sugano, E., Yawo, H. et al. (2007). Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Invest. Ophthalmol. Vis. Sci., 48, 38213826.CrossRefGoogle ScholarPubMed
Tosini, G., Ferguson, I., Tsubota, K., (2016). Effects of blue light on the circadian system and eye physiology. Mol. Vis., 22, 6172.Google ScholarPubMed
van Wyk, M., Pielecka-Fortuna, J., Löwel, S. et al. (2015). Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol., 13, 31002143.CrossRefGoogle ScholarPubMed
Volgraf, M., Gorostiza, P., Numano, R. et al. (2006). Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol., 2, 4752.CrossRefGoogle ScholarPubMed
Vollrath, D., Feng, W., Duncan, J.L. et al. (2001). Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc. Natl. Acad. Sci. U. S. A., 98, 1258412589.CrossRefGoogle ScholarPubMed
Wu, C., Ivanova, E., Zhang, Y. et al. (2013). rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS One, 8, 66332.CrossRefGoogle ScholarPubMed
Yawn, R., Hunter, J.B., Sweeney, A.D. et al. (2015). Cochlear implantation: a biomechanical prosthesis for hearing loss. F1000Prime Rep., 7, 45.CrossRefGoogle ScholarPubMed
Yin, L., Greenberg, K., Hunter, J.J. et al. (2011). Intravitreal injection of AAV2 transduces macaque inner retina. Invest. Ophthalmol. Vis. Sci., 52, 27752783.CrossRefGoogle ScholarPubMed
Zhang, F., Vierock, J., Yizhar, O. et al. (2011). The microbial opsin family of optogenetic tools. Cell, 147, 14461457.CrossRefGoogle ScholarPubMed
Zhang, Y., Ivanova, E., Bi, A. et al. (2009). Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J. Neurosci., 29, 91869196.CrossRefGoogle ScholarPubMed
Zrenner, E., Bartz-Schmidt, K.U., Benav, H. et al. (2011). Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. Biol. Sci., 278, 14891497.Google ScholarPubMed

References

Anselmi, F., Ventalon, C., Begue, A., et al. (2011). “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning.” Proc Natl Acad Sci U S A 108: 1950419509.CrossRefGoogle ScholarPubMed
Bertschinger, D. R., Beknazar, E., Simonutti, M., et al. (2008). “A review of in vivo animal studies in retinal prosthesis research.” Graefes Arch Clin Exp Ophthalmol 246: 15051517.CrossRefGoogle ScholarPubMed
Bi, A., Cui, J., Ma, Y. P., et al. (2006). “Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration.” Neuron 50: 2333.CrossRefGoogle ScholarPubMed
Borghuis, B. G., Tian, L., Xu, Y., et al. (2011). “Imaging light responses of targeted neuron populations in the rodent retina.” J Neurosci 31: 28552867.CrossRefGoogle ScholarPubMed
Busskamp, V., Duebel, J., Balya, D., et al. (2010). “Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa.” Science 329: 413417.CrossRefGoogle ScholarPubMed
Chen, T. W., Wardill, T. J., Sun, Y., et al. (2013). “Ultrasensitive fluorescent proteins for imaging neuronal activity.” Nature 499: 295300.CrossRefGoogle ScholarPubMed
Dana, H., Chen, T. W., Hu, A., et al. (2014). “Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo.” PLoS One 9: e108697.CrossRefGoogle ScholarPubMed
Doroudchi, M. M., Greenberg, K. P., Liu, J., et al. (2011). “Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness.” Mol Ther 19: 12201229.CrossRefGoogle ScholarPubMed
Emiliani, V., Cohen, A. E., Deisseroth, K., et al. (2015). “All-optical interrogation of neural circuits.” J Neurosci 35: 1391713926.CrossRefGoogle ScholarPubMed
Farah, N., Levinsky, A., Brosh, I., et al. (2015). “Holographic fiber bundle system for patterned optogenetic activation of large-scale neuronal networks.” Neurophotonics 2: 045002.CrossRefGoogle ScholarPubMed
Farah, N., Reutsky, I. and Shoham, S. (2007). “Patterned optical activation of retinal ganglion cells.” Conf Proc IEEE Eng Med Biol Soc 2007: 63686370.Google ScholarPubMed
Farah, N., Zoubi, A., Matar, S., et al. (2013). “Holographically patterned activation using photo-absorber induced neural-thermal stimulation.” J Neural Eng 10: 056004.CrossRefGoogle ScholarPubMed
Gaub, B. M., Berry, M. H., Holt, A. E., et al. (2015). “Optogenetic vision restoration using rhodopsin for enhanced sensitivity.” Mol Ther 23: 15621571.CrossRefGoogle ScholarPubMed
Golan, L., Reutsky, I., Farah, N., et al. (2009). “Design and characteristics of holographic neural photo-stimulation systems.” J Neural Eng 6: 066004.CrossRefGoogle ScholarPubMed
Golan, L. and Shoham, S. (2009). “Speckle elimination using shift-averaging in high-rate holographic projection.” Opt Express 17: 13301339.CrossRefGoogle ScholarPubMed
Grossman, N., Poher, V., Grubb, M. S., et al. (2010). “Multi-site optical excitation using ChR2 and micro-LED array.” J Neural Eng 7: 16004.CrossRefGoogle ScholarPubMed
Gualda, E. J., Bueno, J. M. and Artal, P. (2010). “Wavefront optimized nonlinear microscopy of ex vivo human retinas.” J. Biomed. Opt. 15: 026007.CrossRefGoogle ScholarPubMed
Humayun, M. S., Dorn, J. D., da Cruz, L., et al. (2012). “Interim results from the international trial of Second Sight’s visual prosthesis.” Ophthalmology 119: 779788.CrossRefGoogle ScholarPubMed
Lagali, P. S., Balya, D., Awatramani, G. B., et al. (2008). “Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration.” Nat Neurosci 11: 667675.CrossRefGoogle Scholar
Mace, E., Caplette, R., Marre, O., et al. (2015). “Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV Restores ON and OFF visual responses in blind mice.” Mol Ther 23: 716.CrossRefGoogle ScholarPubMed
Mandel, Y., Goetz, G., Lavinsky, D., et al. (2013). “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials.” Nat Commun 4: 1980.CrossRefGoogle ScholarPubMed
Margalit, E., Weiland, J. D., De Juan, E., et al. (2003). Chapter 7.5 in Neuroprosthetics: Theory and Practice. World Scientific Publishers, New Jersey.Google Scholar
Nirenberg, S. and Pandarinath, C. (2012). “Retinal prosthetic strategy with the capacity to restore normal vision.” Proc Natl Acad Sci U S A 109: 1501215017.CrossRefGoogle ScholarPubMed
Palczewska, G., Dong, Z., Golczak, M., et al. (2014). “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye.” Nat Med 20: 785789.CrossRefGoogle ScholarPubMed
Paques, M., Guyomard, J. L., Simonutti, M., et al. (2007). “Panretinal, high-resolution color photography of the mouse fundus.” Invest Ophthalmol Vis Sci 48: 27692774.CrossRefGoogle ScholarPubMed
Reutsky-Gefen, I., Golan, L., Farah, N., et al. (2013). “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration.” Nat Commun 4: 1509.CrossRefGoogle ScholarPubMed
Roska, B. and Pepperberg, D. (2014). “Restoring vision to the blind: optogenetics.” Transl Vis Sci Technol 3: 4.Google Scholar
Schejter, A., Tsur, L., Farah, N., et al. (2012). “Cellular resolution panretinal imaging of optogenetic probes using a simple funduscope.” Trans Vis Sci Tech 1: 4.CrossRefGoogle ScholarPubMed
Schejter Bar-Noam, A., Farah, N. and Shoham, S. (2016). “Correction-free remotely scanned two-photon in vivo mouse retinal imaging.” Light: Science & Applications 5: e16007.CrossRefGoogle Scholar
Sharma, R., Yin, L., Geng, Y., et al. (2013). “In vivo two-photon imaging of the mouse retina.” Biomed Opt Express 4: 12851293.CrossRefGoogle ScholarPubMed
van Wyk, M., Pielecka-Fortuna, J., Lowel, S., et al. (2015). “Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool.” PLoS Biol 13: e1002143.CrossRefGoogle ScholarPubMed
Walter, P., Kisvarday, Z. F., Gortz, M., et al. (2005). “Cortical activation via an implanted wireless retinal prosthesis.” Invest Ophthalmol Vis Sci 46: 17801785.CrossRefGoogle ScholarPubMed
Wang, S., Szobota, S., Wang, Y., et al. (2007). “All optical interface for parallel, remote, and spatiotemporal control of neuronal activity.” Nano Lett 7: 38593863.CrossRefGoogle ScholarPubMed
Weiland, J. D. and Humayun, M. (2014). “Retinal prosthesis.” IEEE Trans Biomed Eng 61: 14121424.CrossRefGoogle ScholarPubMed
Wilms, M., Eger, M., Schanze, T., et al. (2003). “Visual resolution with epi-retinal electrical stimulation estimated from activation profiles in cat visual cortex.” Vis Neurosci 20: 543555.CrossRefGoogle ScholarPubMed
Yang, S., Papagiakoumou, E., Guillon, M., et al. (2011). “Three-dimensional holographic photostimulation of the dendritic arbor.” J Neural Eng 8: 046002.CrossRefGoogle ScholarPubMed
Zrenner, E., Bartz-Schmidt, K. U., Benav, H., et al. (2011). “Subretinal electronic chips allow blind patients to read letters and combine them to words.” Proc Biol Sci 278: 14891497.Google ScholarPubMed

References

Bainbridge, J.W., Mehat, M.S., Sundaram, V., et al. (2015). Long-term effect of gene therapy on Leber’s congenital amaurosis, New England Journal of Medicine, 372: 18871897.CrossRefGoogle ScholarPubMed
Busskamp, V., Duebel, J., Blaya, J., et al. (2010). Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science, 329: 413417.CrossRefGoogle ScholarPubMed
Giraud, C., Winocour, E., and Berns, K.I. (1994). Site-specific integration by adeno-associated virus is directed by a cellular DNA sequence. Proceedings of the National Academy of Sciences of the United States of America, 91: 1003910043.CrossRefGoogle ScholarPubMed
Giraud, C., Winocour, E., and Berns, K.I. (1995). Recombinant junctions formed by site-specific integration of adeno-associated virus into an episome. Journal of Virology, 69: 69176924.CrossRefGoogle ScholarPubMed
Higashimoto, T., Urbinati, S., Perumbeti, A., et al. (2007). The woodchuck hepatitis virus post-transcriptional regulatory element reduces readthrough transcription from retroviral vectors. Gene Therapy, 14: 12981304.CrossRefGoogle ScholarPubMed
Kantor, B., McCown, T., Leone, P., and Gray, S.J. (2014). Clinical applications involving CNS gene transfer. Advances in Genetics, 87: 71124.CrossRefGoogle ScholarPubMed
Lagali, P.S., Balya, D., Awatramani, G.B., et al. (2008). Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nature Neuroscience, 11: 667675.CrossRefGoogle Scholar
Linden, R.M., Ward, P., Giraud, C., Winocour, E., and Berns, K.I. (1996). Site-specific integration by adeno-associated virus. Proceedings of the National Academy of Sciences of the United States of America, 93: 1128811294.CrossRefGoogle ScholarPubMed
Nagel, G., Szellas, T., Huhn, W., et al. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 100: 1394013945.CrossRefGoogle ScholarPubMed
Niwa, H., Yamamura, K., and Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 108: 193199.Google ScholarPubMed
Rizzo, S., Belting, C., Cinelli, L., et al. (2014). The Argus II Retinal Prosthesis: 12-month outcomes from a single-study center. American Journal of Ophthalmology, 157: 12821290.CrossRefGoogle ScholarPubMed
Santos, A., Humayun, M.S., de Juan, E. Jr., et al. (1997). Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Archives of Ophthalmology, 115: 511515.CrossRefGoogle ScholarPubMed
Schnepp, B.C., Clark, K.R., Klemanski, D.L., Pacak, C.A., and Johnson, P.R. (2003). Genetic fate of recombinant adeno-associated virus vector genomes in muscle. Journal of Virology, 77: 34953504.CrossRefGoogle ScholarPubMed
Strettoi, E., Pignatelli, V., Rossi, C., Porciatti, V., and Falsini, B. (2003). Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Research, 43: 867877.CrossRefGoogle ScholarPubMed
Sugano, E., Isago, H., Wang, Z., Murayama, N., Tamai, M., and Tomita, H. (2010). Immune responses to adeno-associated virus type 2 encoding channelrhodopsin-2 in a genetically blind rat model for gene therapy. Gene Therapy, 18: 266274.CrossRefGoogle Scholar
Sugano, E., Tabata, K., Takahashi, M., et al. (2016). Local and systemic responses following intravitreous injection of AAV2-encoded modified Volvox channelrhodopsin-1 in a genetically blind rat model. Gene Therapy, 23: 158166.CrossRefGoogle Scholar
Tochitsky, I., Polosukhina, A., Degtyar, V.E., et al. (2014). Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron, 81: 800813.CrossRefGoogle ScholarPubMed
Tomita, H., Sugano, E., Isago, H., et al. (2010). Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Experimental Eye Research, 90: 429436.CrossRefGoogle ScholarPubMed
Tomita, H., Sugano, E., Murayama, M., et al. (2014). Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1. Molecular Therapy, 22: 14341440.CrossRefGoogle ScholarPubMed
Zemelman, B.V., Lee, G.A., Ng, M., and Miesenbock, G. (2002). Selective photostimulation of genetically chARGed neurons. Neuron, 33: 1522.CrossRefGoogle ScholarPubMed

References

Achard, S., Salvador, R., Whitcher, B. et al. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci., 26, 6372.CrossRefGoogle ScholarPubMed
Andrews-Zwilling, Y., Gillespie, A.K., Kravitz, A.V. et al. (2012). Hilar GABAergic interneuron activity controls spatial learning, memory retrieval. PLoS ONE, 7, e40555.CrossRefGoogle ScholarPubMed
Bonifazi, P., Goldin, M., Picardo, M.A. et al. (2009). GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science, 326, 1419–24.CrossRefGoogle ScholarPubMed
Bouton, M.E. and Bolles, R.C. (1980). Conditioned fear assessed by freezing and by the suppression of three different baselines. Anim. Learn. Behav. 8, 429434.CrossRefGoogle Scholar
Brecht, M., Schneider, M. and Sakmann, B. (2004). Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature, 427, 704710.CrossRefGoogle ScholarPubMed
Buetfering, C., Allen, K. and Monyer, H. (2014). Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nat. Neurosci., 17, 710718.CrossRefGoogle ScholarPubMed
Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci., 10, 186198.CrossRefGoogle ScholarPubMed
Buzsáki, G., Geisler, C., Henze, D.A. et al. (2004). Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci., 27, 186193.CrossRefGoogle ScholarPubMed
Chen, T.W., Wardill, T.J., Sun, Y. et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499, 295300.CrossRefGoogle ScholarPubMed
Choi, G.B., Stettler, D.D., Kallman, B.R. et al. (2011). Driving opposing behaviors with ensembles of piriform neurons. Cell, 146, 10041015.CrossRefGoogle ScholarPubMed
Deisseroth, K. (2015). Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci., 18, 20132025.CrossRefGoogle ScholarPubMed
Deisseroth, K. and Schnitzer, M.J. (2013). Engineering approaches to illuminating brain structure and dynamics. Neuron, 80, 568577.CrossRefGoogle ScholarPubMed
Dombeck, D.A., Harvey, C.D., Tian, L. et al. (2010). Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci., 13, 14331440.CrossRefGoogle ScholarPubMed
Frankland, P.W. and Bontempi, B. (2005). The organization of recent and remote memories. Nat. Rev. Neurosci., 6, 119130.CrossRefGoogle ScholarPubMed
Garner, A.R., Rowland, D.C., Hwang, S.Y. et al. (2012). Generation of a synthetic memory trace. Science, 335, 15131516.CrossRefGoogle ScholarPubMed
Gdalyahu, A., Tring, E., Polack, P. et al. (2012). Associative fear learning enhances sparse network coding in primary sensory cortex. Neuron, 75, 121132.CrossRefGoogle ScholarPubMed
Gore, F., Schwartz, E.C., Brangers, B.C. et al. (2015). Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell, 162, 134145.CrossRefGoogle ScholarPubMed
Goshen, I. (2014). The optogenetic revolution in memory research. Trends Neurosci., 37, 511522.CrossRefGoogle ScholarPubMed
Goshen, I., Brodsky, M., Prakash, R. et al. (2011). Dynamics of retrieval strategies for remote memories. Cell, 147, 678689.CrossRefGoogle ScholarPubMed
Hagmann, P., Cammoun, L., Gigandet, X., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol., 6, e159.CrossRefGoogle ScholarPubMed
Han, J.H., Kushner, S.A., Yiu, A.P. et al. (2007). Neuronal competition and selection during memory formation. Science, 316, 457460.CrossRefGoogle ScholarPubMed
Han, J.H., Kushner, S.A., Yiu, A.P. et al. (2009). Selective erasure of a fear memory. Science, 323, 14921496.CrossRefGoogle ScholarPubMed
He, Y., Chen, Z.J. and Evans, A. C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex, 17, 24072419.CrossRefGoogle ScholarPubMed
Hermundstad, A.M., Brown, K.S., Bassett, D.S. et al. (2011). Learning, memory, and the role of neural network architecture. PLoS Comput. Biol., 7, e1002063.CrossRefGoogle ScholarPubMed
Houweling, A.R. and Brecht, M. (2008). Behavioural report of single neuron stimulation in somatosensory cortex. Nature, 451, 6568.CrossRefGoogle ScholarPubMed
Ito, H.T., Zhang, S.J., Witter, M.P. et al. (2015). A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature, 522, 5055.CrossRefGoogle ScholarPubMed
Kandel, E.R., Dudai, Y. and Mayford, M.R. (2014). The molecular and systems biology of memory. Cell, 157, 163186.CrossRefGoogle ScholarPubMed
Kheirbek, M.A., Drew, L.J., Burghardt, N.S. et al. (2013). Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron, 77, 955968.CrossRefGoogle ScholarPubMed
Komiyama, T., Sato, T.R., O’Connor, D.H. et al. (2010). Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature, 464, 11821186.CrossRefGoogle ScholarPubMed
Li, C.Y., Poo, M-M. and Dan, Y. (2009). Burst spiking of a single cortical neuron modifies global brain state. Science, 324, 643646.CrossRefGoogle ScholarPubMed
Li, X., Ouyang, G., Usami, A. et al. (2010). Scale-free topology of the CA3 hippocampal network: a novel method to analyze functional neuronal assemblies. Biophys. J., 98, 17331741.CrossRefGoogle ScholarPubMed
Lin, J.Y., Knutsen, P.M., Muller, A. et al. (2013). ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci., 16, 14991508.CrossRefGoogle ScholarPubMed
Liu, X., Ramirez, S., Pang, P.T. et al. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484, 381385.CrossRefGoogle ScholarPubMed
Lovett-Barron, M., Kaifosh, P., Kheirbek, M.A. et al. (2014). Dendritic inhibition in the hippocampus supports fear learning. Science, 343, 857863.CrossRefGoogle ScholarPubMed
Mahoney, W.J. and Ayres, J.J.B. (1976). One-trial simultaneous and backward fear conditioning as reflected in conditioned suppression of licking in rats. Anim. Learn. Behav. 4, 357362.CrossRefGoogle Scholar
Meunier, D., Lambiotte, R. and Bullmore, E.T. (2010). Modular and hierarchically modular organization of brain networks. Front. Neurosci., 4, 200.CrossRefGoogle ScholarPubMed
Olshausen, B.A. and Field, D.J. (2004). Sparse coding of sensory inputs. Curr. Opin. Neurobiol., 14, 481487.CrossRefGoogle ScholarPubMed
Perin, R., Berger, T.K. and Markram, H. (2011). A synaptic organizing principle for cortical neuronal groups. PNAS, 108, 54195424.CrossRefGoogle ScholarPubMed
Ramirez, S., Liu, X., Lin, P.A. et al. (2013). Creating a false memory in the hippocampus. Science, 341, 387391.CrossRefGoogle ScholarPubMed
Rajasethupathy, P., Sankaran, S., Marshel, J. et al. (2015). Projections from neocortex mediate top-down control of memory retrieval. Nature, 526, 653659.CrossRefGoogle ScholarPubMed
Redondo, R.L., Kim, J., Arons, A.L. et al. (2014). Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature, 513, 426430.CrossRefGoogle ScholarPubMed
Reijmers, L.G., Perkins, B.L., Matsuo, N. et al. (2007). Localization of a stable neural correlate of associative memory. Science, 317, 12301233.CrossRefGoogle ScholarPubMed
Root, C.M., Denny, C.A., Hen, R. et al. (2014). The participation of cortical amygdala in innate, odour-driven behaviour. Nature, 515, 269273.CrossRefGoogle ScholarPubMed
Song, S., Sjöström, P.J., Reigl, M. et al. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol., 3, e68.CrossRefGoogle ScholarPubMed
Vinje, W.E. and Gallant, J.L. (2000). Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 287, 12731276.CrossRefGoogle ScholarPubMed
Wickersham, I.R., Finke, S., Conzelmann, K.K. et al. (2007). Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat. Methods, 4, 4749.CrossRefGoogle ScholarPubMed
Xu, W. and Südhof, T.C. (2013). A neural circuit for memory specificity and generalization. Science, 339, 12901295.CrossRefGoogle ScholarPubMed
Yassin, L., Benedetti, B.L., Jouhanneau, J.S. et al. (2010). An embedded subnetwork of highly active neurons in the neocortex. Neuron, 68, 10431050.CrossRefGoogle ScholarPubMed
Yiu, A.P., Mercaldo, V., Yan, C. et al. (2014). Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron, 83, 722735.CrossRefGoogle ScholarPubMed
Yizhar, O., Fenno, L.E., Prigge, M. et al. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 477, 171178.CrossRefGoogle ScholarPubMed
Yu, S., Huang, D., Singer, W. et al. (2008). A small world of neuronal synchrony. Cereb. Cortex, 18, 28912901.CrossRefGoogle ScholarPubMed
Zhang, S.-J., Ye, J., Miao, C. et al. (2013). Optogenetic dissection of entorhinal–hippocampal functional connectivity. Science, 340, 1232627.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×