Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T03:23:05.734Z Has data issue: false hasContentIssue false

1 - The origin and evolution of Titan

Published online by Cambridge University Press:  05 January 2014

G. Tobie
Affiliation:
Université de Nantes
J. I. Lunine
Affiliation:
Cornell University
J. Monteux
Affiliation:
Université de Nantes
O. Mousis
Affiliation:
Université de Franche-Comté
F. Nimmo
Affiliation:
University of California
Ingo Müller-Wodarg
Affiliation:
Imperial College London
Caitlin A. Griffith
Affiliation:
University of Arizona
Emmanuel Lellouch
Affiliation:
Observatoire de Paris, Meudon
Thomas E. Cravens
Affiliation:
University of Kansas
Get access

Summary

1.1 Introduction

Although Titan is similar in terms of mass and size to Jupiter's moons Ganymede and Callisto, it is different in that it is the only one harboring a massive atmosphere. Moreover, unlike the Jovian system, which is populated with four large moons, Titan is the only large moon around Saturn. The other Saturnian moons are much smaller and have an average density at least 25 percent less than Titan's uncompressed density and much below the density expected for a solar composition (Johnson and Lunine, 2005), although with a large variation from satellite to satellite. Both Jupiter's and Saturn's moon systems are thought to have formed in a disk around the growing giant planet. However, the difference in architecture between the two systems probably reflects different disk characteristics and evolution (e.g., Sasaki et al., 2010), and, in the case of Saturn, possibly the catastrophic loss of one or more Titan-sized moons (Canup, 2010). Moreover, the presence of a massive atmosphere on Titan, as well as the emission of gases from Enceladus' active south polar region (Waite et al., 2009), suggest that the primordial building blocks that comprise the Saturnian system were probably more volatile-rich than those of Jupiter.

The composition of the present-day atmosphere, dominated by nitrogen, with a few percent methane and lesser amounts of other species, probably does not directly reflect the composition of the primordial building blocks and is rather the result of complex evolutionary processes involving internal chemistry and outgassing, impact cratering, photochemistry, escape, crustal storage and recycling, and other processes.

Type
Chapter
Information
Titan
Interior, Surface, Atmosphere, and Space Environment
, pp. 29 - 62
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnor, C. B., Canup, R. M., and Levison, H. F. 1999. On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation. Icarus, 142, 219–237. doi: 10.1006/icar.1999.6201.Google Scholar
Alibert, Y., and Mousis, O. 2007. Formation of Titan in Saturn's Subnebula: Constraints from Huygens Probe Measurements. Astron. Astrophys., 465, 1051–1060. doi: 10.1051/0004-6361:20066402.Google Scholar
Alibert, Y., Mousis, O., and Benz, W. 2005a. Modeling the Jovian Subnebula. I. Thermodynamic Conditions and Migration of Proto-satellites. Astron. Astrophys., 439, 1205–1213. doi: 10.1051/0004-6361:20052841.Google Scholar
Alibert, Y., Mousis, O., Mordasini, C., and Benz, W. 2005b. New Jupiter and Saturn Formation Models Meet Observations. Astroph. J., 626, L57–L60. doi: 10.1086/431325.Google Scholar
Allègre, C. J., Hofmann, A., and O'Nions, K. 1996. The Argon Constraints on Mantle Structure. Geophys. Res. Lett., 23, 3555–3558. doi: 10.1029/96GL03373.Google Scholar
Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G., et al. 1996. Gravitational Constraints on the Internal Structure of Ganymede. Nature, 384, 541–543. doi: 10.1038/384541a0.Google Scholar
Anderson, J. D., Jacobson, R. A., McElrath, T. P., Moore, W. B., et al. 2001. Shape, Mean Radius, Gravity Field, and Interior Structure of Callisto. Icarus, 153, 157–161. doi: 10.1006/icar.2001.6664.Google Scholar
Artemieva, N., and Lunine, J. 2003. Cratering on Titan: Impact Melt, Ejecta, and the Fate of Surface Organics. Icarus, 164, 471–480. doi: 10.1016/S0019-1035(03)00148-9.Google Scholar
Artemieva, N., and Lunine, J. I. 2005. Impact Cratering on Titan II. Global Melt, Escaping Ejecta, and Aqueous Alteration of Surface Organics. Icarus, 175, 522–533. doi: 10.1016/j.icarus.2004.12.005.Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., and Scott, P. 2009. The Chemical Composition of the Sun. Ann. Rev. Astron. Astroph., 47, 481–522. doi: 10.1146/annurev.astro.46.060407.145222.Google Scholar
Atreya, S. K., Donahue, T. M., and Kuhn, W. R. 1978. Evolution of a Nitrogen Atmosphere on Titan. Science, 201, 611–613. doi: 10.1126/science.201.4356.611.Google Scholar
Atreya, S. K., Adams, E. Y., Niemann, H. B., Demick-Montelara, J. E., et al. 2006. Titan's Methane Cycle. Planet. Space Sci., 54, 1177–1187. doi: 10.1016/j.pss.2006.05.028.Google Scholar
Baland, R.-M., van Hoolst, T., Yseboodt, M., and Karatekin, Ö. 2011. Titan's Obliquity as Evidence of a Subsurface Ocean?Astron. Astrophys., 530, A141. doi: 10.1051/0004-6361/201116578.Google Scholar
Barr, A. C., and Canup, R. M. 2010. Origin of the Ganymede-Callisto Dichotomy by Impacts During the Late Heavy Bombardment. Nature Geoscience, 3, 164–167. doi: 10.1038/ngeo746.Google Scholar
Barr, A. C., and McKinnon, W. B. 2007. Convection in Enceladus' Ice Shell: Conditions for Initiation. Geophys. Res. Lett., 340, L09202. doi:10.1029/2006GL028799.Google Scholar
Barr, A. C., Citron, R. I., and Canup, R. M. 2010. Origin of a Partially Differentiated Titan. Icarus, 209, 858–862. doi: 10.1016/j.icarus.2010.05.028.Google Scholar
Béghin, C., Simões, F., Krasnoselskikh, V, Schwingenschuh, K. e al. 2007. A Schumann-Like Resonance on Titan Driven by Saturn's Magnetosphere Possibly Revealed by the Huygens Probe. Icarus, 191, 251–266. doi: 10.1016/j.icarus.2007.04.005.Google Scholar
Béghin, C., Canu, P., Karkoschka, E., Sotin, C., et al. 2009. New Insights on Titan's Plasma-Driven Schumann Resonance Inferred from Huygens and Cassini data. Planet. Space. Sci., 57, 1872–1888. doi: 10.1016/j.pss.2009.04.006.Google Scholar
Béghin, C., Sotin, C., and Hamelin, M. 2010. Titan's Native Ocean Revealed Beneath Some 45 km of Ice by a Schumann-Like Resonance. Comptes Rendus Geoscience, 342, 425–433. doi: 10.1016/j.crte.2010.03.003.Google Scholar
Bills, B. G., and Nimmo, F. 2011. Rotational Dynamics and Internal Structure of Titan. Icarus, 214, 351–355. doi: 10.1016/j.icarus.2011.04.028.Google Scholar
Boss, A. P. 1997. Giant Planet Formation by Gravitational Instability. Science, 276, 1836–1839. doi: 10.1126/science.276.5320.1836.Google Scholar
Boss, A. P. 2005. Collapse and Fragmentation of Molecular Cloud Cores. VIII. Magnetically Supported Infinite Sheets. Astroph. J., 622, 393–403. doi: 10.1086/428113.Google Scholar
Brown, R. H., Soderblom, L. A., Soderblom, J. M., Clark, R. N., et al. 2008. The Identification of Liquid Ethane in Titan's Ontario Lacus. Nature, 454, 607–610. doi: 10.1038/nature07100.Google Scholar
Cameron, A. G. W. 1978. Physics of the Primitive Solar Accretion Disk. Moon and Planets, 18, 5–40. doi: 10.1007/BF00896696.Google Scholar
Canup, R. M. 2010. Origin of Saturn's Rings and Inner Moons by Mass Removal from a Lost Titan-Sized satellite. Nature, 468, 943–926. doi: 10.1038/nature09661.Google Scholar
Canup, R. M., and Ward, W. R. 2002. Formation of the Galilean Satellites: Conditions of Accretion. Astron. J., 124, 3404–3423. doi: 10.1086/344684.Google Scholar
Canup, R. M., and Ward, W. R. 2006. A Common Mass Scaling for Satellite Systems of Gaseous Planets. Nature, 441, 834–839. doi: 10.1038/nature04860.Google Scholar
Canup, R. M., and Ward, W. R. 2009. Origin of Europa and the Galilean Satellites. In: Pappalardo et al. (2009).
Castillo-Rogez, J. C., and Lunine, J. I. 2010. Evolution of Titan's Rocky Core Constrained by Cassini Observations. Geophys. Res. Lett., 37, L20205. doi: 10.1029/2010GL044398.Google Scholar
Charnoz, S., Crida, A., Castillo-Rogez, J. C., Lainey, V., et al. 2011. Accretion of Saturn's Mid-Sized Moons during the Viscous Spreading of Young Massive Rings: Solving the Paradox of Silicate-Poor Rings versus Silicate-Rich Moons. Icarus, 216, 535–550. doi: 10.1016/j.icarus.2011.09.017.Google Scholar
Choukroun, M., and Sotin, C. 2012. Is Titan's Shape Caused by its Meteorology and Carbon Cycle?Geophys. Res. Lett., 39(Feb.), 4201. doi: 10.1029/2011GL050747.Google Scholar
Choukroun, M., Grasset, O., Tobie, G., and Sotin, C. 2010. Stability of Methane Clathrate Hydrates under Pressure: Influence on Outgassing Processes of Methane on Titan. Icarus, 205, 581–593. doi: 10.1016/j.icarus.2009.08.011.Google Scholar
Choukroun, M., Kieffer, S. W., Lu, X., and Tobie, G. 2013. Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System. Gudipati, M., and Castillo-Rogez, J. C. (eds.), The Science of Solar System Ices, 3rd ed. Springer-Verlag, New York, P. 409.
Coradini, A., Cerroni, P., Magni, G., and Federico, C. 1989. Formation of the Satellites of the Outer Solar System -Sources of Their Atmospheres. Atreya, S. K., Pollack, J. B., and Matthews, M. S. (eds.), Origin and Evolution of Planetary and Satellite Atmospheres. Tucson: University of Arizona Press, pp. 723–762.
Cordier, D., Mousis, O., Lunine, J. I., Lavvas, P., et al. 2009. An Estimate of the Chemical Composition of Titan's Lakes. Astroph. J., 707, L128–L131. doi: 10.1088/0004-637X/707/2/L128.Google Scholar
Cordier, D., Mousis, O., Lunine, J. I., Lebonnois, S., et al. 2010. About the Possible Role of Hydrocarbon Lakes in the Origin of Titan's Noble Gas Atmospheric Depletion. Astroph. J., 721, L117–L120. doi: 10.1088/2041-8205/721/2/L117.Google Scholar
Croft, S. K. 1982. A First-Order Estimate of Shock Heating and Vaporization in Oceanic Impacts. In Silver, T. L., and Schultz, P. H. (eds.), Geological Implications of Impacts of Large Asteroids and Comets on Earth, vol. 190. Spec. Pap. Geol. Soc. Am.
Deschamps, F., Mousis, O., Sanchez-Valle, C., and Lunine, J. I. 2010. The Role of Methanol in the Crystallization of Titan's Primordial Ocean. Astroph. J., 724, 887–894. doi: 10.1088/0004-637X/724/2/887.Google Scholar
Engel, S., and Lunine, J. I. 1994. Silicate Interactions with Ammonia-Water Fluids on Early Titan. J. Geophys. Res., 99, 3745–3752. doi: 10.1029/93JE03433.Google Scholar
Estrada, P. R., and Mosqueira, I. 2006. A Gas-Poor Planetesimal Capture Model for the Formation of Giant Planet Satellite Systems. Icarus, 181, 486–509. doi: 10.1016/j.icarus.2005.11.006.CrossRefGoogle Scholar
Estrada, P. R., and Mosqueira, I. 2011. Titan's Accretion and Long Term Thermal History. Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Inst. Technical Report, vol. 42, p. 1679.Google Scholar
Estrada, P. R., Mosqueira, I., Lissauer, J. J., D'Angelo, G., et al. 2009. Formation of Jupiter and Conditions for Accretion of the Galilean Satellites. In Pappalardo et al. (2009).
Fortes, A. D. 2012. Titan's Internal Structure and the Evolutionary Consequences. Planet. Space Sci., 60(Jan.), 10–17. doi: 10.1016/j.pss.2011.04.010.Google Scholar
Fortes, A. D., Grindrod, P. M., Trickett, S. K., and Vocadlo, L. 2007. Ammonium Sulfate on Titan: Possible Origin and Role in Cryovolcanism. Icarus, 188, 139–153. doi: 10.1016/j.icarus.2006.11.002.Google Scholar
Friedson, A. J., and Stevenson, D. J. 1983. Viscosity of Rock-Ice Mixtures and Applications to the Evolution of Icy Satellites. Icarus, 56, 1–14. doi: 10.1016/0019-1035(83)90124-0.Google Scholar
Gautier, D., Hersant, F., Mousis, O., and Lunine, J. I. 2001. Enrichments in Volatiles in Jupiter: A New Interpretation of the Galileo Measurements. Astrophys. J, 550, L227–L230. doi: 10.1086/319648.Google Scholar
Glein, C. R., Zolotov, M. Y., and Shock, E. L. 2008. The Oxidation State of Hydrothermal Systems on Early Enceladus. Icarus, 197, 157–163. doi: 10.1016/j.icarus.2008.03.021.Google Scholar
Glein, C. R., Desch, S. J., and Shock, E. L. 2009. The Absence of Endogenic Methane on Titan and Its Implications for the Origin of Atmospheric Nitrogen. Icarus, 204, 637–644. doi: 10.1016/j.icarus.2009.06.020.Google Scholar
Goldreich, P., and Ward, W. R. 1973. The Formation of Planetesimals. Astroph. J., 183, 1051–1062. doi: 10.1086/152291.Google Scholar
Grasset, O., and Pargamin, J. 2005. The Ammonia-Water System at High Pressures: Implications for the Methane of Titan. Planet. Space Sci., 53, 371–384.Google Scholar
Grasset, O., and Sotin, C. 1996. The Cooling Rate of a Liquid Shell in Titan's Interior. Icarus, 123, 101–112.Google Scholar
Grindrod, P. M., Fortes, A. D., Nimmo, F., Feltham, D. L., et al. 2008. The Long-Term Stability of a Possible Aqueous Ammonium Sulfate Ocean Inside Titan. Icarus, 197, 137–151. doi: 10.1016/j.icarus.2008.04.006.Google Scholar
Hayes, A., Aharonson, O., Callahan, P., Elachi, C., et al. 2008. Hydrocarbon Lakes on Titan: Distribution and Interaction with a Porous Regolith. Geophys. Res. Lett., 35, L09204. doi: 10.1029/2008GL033409.CrossRefGoogle Scholar
Helled, R., and Bodenheimer, P. 2010. Metallicity of the Massive Protoplanets around HR 8799 If Formed by Gravitational Instability. Icarus, 207, 503–508. doi: 10.1016/j.icarus.2009.11.023.Google Scholar
Hersant, F., Gautier, D., Tobie, G., and Lunine, J. I. 2008. Interpretation of the Carbon Abundance in Saturn Measured by Cassini. Planet. Space Sci., 56, 1103–1111.Google Scholar
Hubickyj, O., Bodenheimer, P., and Lissauer, J. J. 2005. Accretion of the Gaseous Envelope of Jupiter around a 5 10 Earth-Mass Core. Icarus, 179, 415–431. doi: 10.1016/j.icarus.2005.06.021.Google Scholar
Hutchins, K. S., and Jakosky, B. M. 1996. Evolution of Martian Atmospheric Argon: Implications for Sources of Volatiles. J. Geophys. Res., 101, 14933–14950. doi: 10.1029/96JE00860.Google Scholar
Iess, L., Rappaport, N. J., Jacobson, R. A., Racioppa, P., et al. 2010. Gravity Field, Shape, and Moment of Inertia of Titan. Science, 327, 1367–1369. doi: 10.1126/science.1182583.CrossRefGoogle Scholar
Iess, L., Jacobson, R. A., Ducci, M., Stevenson, D. J., et al. 2012. The Tides of Titan. Science, 337, 457–459, doi:10.1126/science.1219631.Google Scholar
Ishimaru, R., Sekine, Y., Matsui, T., and Mousis, O. 2011. Oxidizing Proto-Atmosphere on Titan: Constraint from N2 Formation by Impact Shock. Astroph. J. Lett., 741, L10. doi: 10.1088/2041-8205/741/1/L10.Google Scholar
Jacovi, R., and Bar-Nun, A. 2008. Removal of Titan's Noble Gases by Their Trapping in Its Haze. Icarus, 196, 302–304. doi: 10.1016/j.icarus.2008.02.014.Google Scholar
Johnson, T. V, and Lunine, J. I. 2005. Saturn's Moon Phoebe as a Captured Body from the Outer Solar System. Nature, 435, 69–71. doi: 10.1038/nature03384.Google Scholar
Jones, T. D., and Lewis, J. S. 1987. Estimated Impact Shock Production of N2 and Organic Compounds on Early Titan. Icarus, 72, 381–393. doi: 10.1016/0019-1035(87)90181-3.CrossRefGoogle Scholar
Kargel, J. S. 1992. Ammonia-Water Volcanism on Icy Satellites – Phase Relations at 1 Atmosphere. Icarus, 100, 556–574. doi: 10.1016/0019-1035(92)90118-Q.Google Scholar
Kaula, W. M. 1979. Thermal Evolution of Earth and Moon Growing by Planetesimal Impacts. J. Geophys. Res., 84, 999–1008. doi: 10.1029/JB084iB03p00999.Google Scholar
Kaula, W. M. 1999. Constraints on Venus Evolution from Radiogenic Argon. Icarus, 139, 32–39. doi: 10.1006/icar.1999.6082.Google Scholar
Khurana, K. K., Kivelson, M. G., Stevenson, D. J., Schubert, G., et al. 1998. Induced Magnetic Fields as Evidence for Subsurface Oceans in Europa and Callisto. Nature, 395, 777–780. doi: 10.1038/27394.Google Scholar
Khurana, K. K., Jia, X., Kivelson, M. G., Nimmo, F., et al. 2011. Evidence of a Global Magma Ocean in Io's Interior. Science, 332, 1186–1189. doi: 10.1126/science.1201425.Google Scholar
Kirk, R. L., and Stevenson, D. J. 1987. Thermal Evolution of a Differentiated Ganymede and Implications for Surface Features. Icarus, 69, 91–134.Google Scholar
Kivelson, M. G., Khurana, K. K., and Volwerk, M. 2002. The Permanent and Inductive Magnetic Moments of Ganymede. Icarus, 157, 507–522. doi: 10.1006/icar.2002.6834.Google Scholar
Kokubo, E., and Ida, S. 1996. On Runaway Growth of Planetesimals. Icarus, 123, 180–191. doi: 10.1006/icar.1996.0148.Google Scholar
Korycansky, D. G., and Zahnle, K. J. 2011. Titan Impacts and Escape. Icarus, 211, 707–721. doi: 10.1016/j.icarus.2010.09.013.Google Scholar
Kossacki, K. J., and Lorenz, R. D. 1996. Hiding Titan's Ocean: Densification and Hydrocarbon Storage in an Icy Regolith. Planet. Space Sci., 44, 1029–1037.Google Scholar
Kuramoto, K., and Matsui, T. 1994. Formation of a Hot Proto-Atmosphere on the Accreting Giant Icy Satellite: Implications for the Origin and Evolution of Titan, Ganymede, and Callisto. J. Geophys. Res., 99, 21,183-21,200. doi: 10.1029/94JE01864.Google Scholar
Lainey, V, Karatekin, O, Desmars, J., Charnoz, S., et al. 2011. Strong Tidal Dissipation in Saturn and Constraints on Enceladus' Thermal State from Astrometry. Astroph. J., 752 doi: 10.1088/0004-637X/752/1/14.Google Scholar
Lewis, J. S., and Prinn, R. G. 1980. Kinetic Inhibition of CO and N2 Reduction in the Solar Nebula. Astroph. J., 238, 357–364. doi: 10.1086/157992.CrossRefGoogle Scholar
Lide, D. R. (ed.). 2004. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data. 85th ed. Boca Raton, London, New York, Washington, D.C.: CRC Press.
Lissauer, J. J., and Safronov, V. S. 1991. The Random Component of Planetary Rotation. Icarus, 93, 288–297. doi: 10.1016/0019-1035(91)90213-D.Google Scholar
Lorenz, R. D., McKay, C. P., and Lunine, J. I. 1997a. Photochemically-Induced Collapse of Titan's Atmosphere. Science, 275, 642–644.Google Scholar
Lorenz, R. D., Lunine, J. I., and McKay, C. P. 1997b. Titan under a Red Giant Sun: A New Kind of “Habitable” Moon. Geophys. Res. Lett., 24, 2905. doi: 10.1029/97GL52843.Google Scholar
Lorenz, R. D., Mitchell, K. L., Kirk, R. L., and the Cassini RADAR team. 2008a. Titan's Inventory of Organic Surface Materials. Geophys. Res. Lett., 35, L02206.Google Scholar
Lorenz, R. D., Stiles, B. W., Kirk, R. L., Allison, M. D., et al. 2008b. Titan's Rotation Reveals an Internal Ocean and Changing Zonal Winds. Science, 319, 1649–1652. doi: 10.1126/science.1151639.Google Scholar
Lunine, J., Choukroun, M., Stevenson, D., and Tobie, G. 2009. The Origin and Evolution of Titan. In Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer, pp. 35–59. doi: 10.1007/978-1-4020-9215-2_3.CrossRef
Lunine, J. I. 2010. Titan and Habitable Planets around M-Dwarfs. Faraday Discussions, 147, 405. doi: 10.1039/c004788k.Google Scholar
Lunine, J. I., and Stevenson, D. J. 1985. Thermodynamics of Clathrate Hydrate at Low and High Pressures with Application to the Outer Solar System. Astrophys. J. Suppl., 58, 493–531.Google Scholar
Lunine, J. I., and Stevenson, D. J. 1987. Clathrate and Ammonia Hydrates at High Pressure – Application to the Origin of Methane on Titan. Icarus, 70, 61–77.Google Scholar
Lunine, J. I., Stevenson, D. J., and Yung, Y. L. 1983. Ethane Ocean on Titan. Science, 222, 1229–1231.Google Scholar
Lunine, J. I., Artemieva, N., and Tobie, G. 2010. Impact Cratering on Titan: Hydrocarbons versus Water. In Lunar and Planetary Institute Science Conference Abstracts, p. 1533.Google Scholar
Mackenzie, R. A., Iess, L., Tortora, P., and Rappaport, N. J. 2008. A Non-Hydrostatic Rhea. Geophys. Res. Lett., 350, L05204. doi: 10.1029/2007GL032898.Google Scholar
Mandt, K. E., Waite, J. H., Lewis, W., Magee, B., et al. 2009. Isotopic Evolution of the Major Constituents of Titan's Atmosphere Based on Cassini Data. Planet. Space Sci., 57, 1917–1930. doi: 10.1016/j.pss.2009.06.005.Google Scholar
Marboeuf, U., Mousis, O., Ehrenreich, D., Alibert, Y., et al. 2008. Composition of Ices in Low-Mass Extrasolar Planets. Astroph. J., 681, 1624–1630. doi: 10.1086/588777.Google Scholar
Matson, D. L., Castillo, J. C., Lunine, J., and Johnson, T. V. 2007. Enceladus' Plume: Compositional Evidence for a Hot Interior. Icarus, 187, 569–573. doi: 10.1016/j.icarus.2006.10.016.Google Scholar
McCord, T. B., Hayne, P., Combe, J.-P., Hansen, G. B., et al. and The Cassini VIMS Team. 2008. Titan's Surface: Search for Spectral Diversity and Composition Using the Cassini VIMS Investigation. Icarus, 194, 212–242. doi: 10.1016/j.icarus.2007.08.039.Google Scholar
McKay, C. P., Scattergood, T. W., Pollack, J. B., Borucki, W. J., etal. 1988. High-Temperature Shock Formation of N2 and Organics on Primordial Titan. Nature, 332, 520–522. doi: 10.1038/332520a0.Google Scholar
McKay, C. P., Pollack, J. B., Lunine, J. I., and Courtin, R. 1993. Coupled Atmosphere-Ocean Models of Titan's Past. Icarus, 102, 88–98. doi: 10.1006/icar.1993.1034.CrossRefGoogle Scholar
McKinnon, W. B. 2010. Radiogenic Argon Release from Titan: Sources, Efficiency, and Role of the Ocean (Invited). AGU Fall Meeting Abstracts, P22A-01.Google Scholar
Mitri, G., and Showman, A. P. 2008. Thermal Convection in Ice-I Shells of Titan and Enceladus. Icarus, 193, 387–396. doi: 10.1016/j.icarus.2007.07.016.Google Scholar
Mitri, G., Showman, A. P., Lunine, J. I., and Lorenz, R. D. 2007. Hydrocarbon Lakes on Titan. Icarus, 186, 385–394. doi: 10.1016/j.icarus.2006.09.004.Google Scholar
Monteux, J., Coltice, N., Dubuffet, F., and Ricard, Y. 2007. Thermo-Mechanical Adjustment after Impacts during Planetary Growth. Geophys. Res. Lett., 342, L24201. doi: 10.1029/2007GL031635.Google Scholar
Monteux, J., Ricard, Y., Coltice, N., Dubuffet, F., et al. 2009. A Model of Metal-Silicate Separation on Growing Planets. Earth Planet. Sci. Lett., 287, 353–362. doi: 10.1016/j.epsl.2009.08.020.Google Scholar
Moore, J. M., and Pappalardo, R. T. 2011. Titan: An Exogenic World?Icarus, 212, 790–806. doi: 10.1016/j.icarus.2011.01.019.Google Scholar
Mordasini, C., Alibert, Y., and Benz, W. 2009. Extrasolar Planet Population Synthesis. I. Method, Formation Tracks, and Mass-Distance Distribution. Astron. Astroph., 501, 1139–1160. doi: 10.1051/0004-6361/200810301.Google Scholar
Mosqueira, I., and Estrada, P. R. 2003a. Formation of the Regular Satellites of Giant Planets in an Extended Gaseous Nebula I: Subnebula Model and Accretion of Satellites. Icarus, 163, 198–231. doi: 10.1016/S0019-1035(03)00076-9.Google Scholar
Mosqueira, I., and Estrada, P. R. 2003b. Formation of the Regular Satellites of Giant Planets in an Extended Gaseous Nebula II: Satellite Migration and Survival. Icarus, 163, 232–255. doi: 10.1016/S0019-1035(03)00077-0.Google Scholar
Mousis, O., and Alibert, Y. 2006. Modeling the Jovian Subnebula. II. Composition of Regular Satellite Ices. Astron. Astrophys., 448, 771–778. doi: 10.1051/0004-6361:20053211.Google Scholar
Mousis, O., and Schmitt, B. 2008. Sequestration of Ethane in the Cryovolcanic Subsurface of Titan. Astrophys. J., 677, L67-L70. doi: 10.1086/587141.Google Scholar
Mousis, O., Alibert, Y., and Benz, W. 2006. Saturn's Internal Structure and Carbon Enrichment. Astron. Astroph., 449, 411–415. doi: 10.1051/0004-6361:20054224.Google Scholar
Mousis, O., Lunine, J. I., Pasek, M., Cordier, D., et al. 2009a. A Primordial Origin for the Atmospheric Methane of Saturn's Moon Titan. Icarus, 204, 749–751. doi: 10.1016/j.icarus.2009.07.040.Google Scholar
Mousis, O., Lunine, J. I., Thomas, C., Pasek, M., et al. 2009b. Clathration of Volatiles in the Solar Nebula and Implications for the Origin of Titan's Atmosphere. Astrophys. J., 691, 1780–1786. doi: 10.1088/0004-637X/691/2/1780.Google Scholar
Mousis, O., Marboeuf, U., Lunine, J. I., Alibert, Y., et al. 2009c. Determination of the Minimum Masses of Heavy Elements in the Envelopes of Jupiter and Saturn. Astroph. J., 696, 1348–1354. doi: 10.1088/0004-637X/696/2/1348.Google Scholar
Mousis, O., Lunine, J. I., Picaud, S., and Cordier, D. 2010. Volatile Inventories in Clathrate Hydrates Formed in the Primordial Nebula. Faraday Discussions, 147, 509. doi: 10.1039/c003658g.Google Scholar
Mousis, O., Lunine, J. I., Picaud, S., Cordier, D., et al. 2011. Removal of Titan's Atmospheric Noble Gases by Their Sequestration in Surface Clathrates. Astroph. J., 740, L9. doi: 10.1088/2041-8205/740/1/L9.Google Scholar
Mueller, S., and McKinnon, W. B. 1988. Three-Layered Models of Ganymede and Callisto – Compositions, Structures, and Aspects of Evolution. Icarus, 76, 437–464. doi: 10.1016/0019-1035(88)90014-0.CrossRefGoogle Scholar
Nagel, K., Breuer, D., and Spohn, T. 2004. A Model for the Interior Structure, Evolution, and Differentiation of Callisto. Icarus, 169, 402–412. doi: 10.1016/j.icarus.2003.12.019.Google Scholar
Niemann, H. B., Atreya, S. K., and the Huygens GCMS team. 2005. The Abundances of Constituents of Titan's Atmosphere from the GCMS Instrument on the Huygens Probe. Nature, 438, 779–784. doi: 10.1038/nature04122.CrossRefGoogle Scholar
Niemann, H. B., Atreya, S. K., Demick, J. E., Gautier, D., et al. 2010. Composition of Titan's Lower Atmosphere and Simple Surface Volatiles as Measured by the Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer Experiment. J. Geophys. Res., 115(E14), E12006. doi: 10.1029/2010JE003659.Google Scholar
Nimmo, F., and Bills, B. G. 2010. Shell Thickness Variations and the Long-Wavelength Topography of Titan. Icarus, 208, 896–904. doi: 10.1016/j.icarus.2010.02.020.CrossRefGoogle Scholar
Ojakangas, G. W., and Stevenson, D. J. 1989. Thermal State of an Ice Shell on Europa. Icarus, 81, 220–241. doi: 10.1016/0019-1035(89)90052-3.Google Scholar
O'Rourke, J. G., and Stevenson, D. J. 2011. Stability of Ice/Rock Mixtures with Application to Titan. Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Inst. Technical Report, vol. 42, p. 1629.Google Scholar
Osegovic, J. P., and Max, M. D. 2005. Compound Clathrate Hydrate on Titan's Surface. J. Geophys. Res., 110(E9), 8004. doi: 10.1029/2005JE002435.Google Scholar
Owen, T. 1982. The Composition and Origin of Titan's Atmosphere. Planet. Space Sci., 30, 833–838.Google Scholar
Papaloizou, J. C. B., and Terquem, C. 1999. Critical Protoplanetary Core Masses in Protoplanetary Disks and the Formation of Short-Period Giant Planets. Astroph. J., 521, 823–838. doi: 10.1086/307581.Google Scholar
Pappalardo, R. T., McKinnon, W. B., and Khurana, K. (eds.). 2009. Europa. Tucson: University of Arizona Press.
Pasek, M. A., Milsom, J. A., Ciesla, F. J., Lauretta, D. S., et al. 2005. Sulfur Chemistry with Time-Varying Oxygen Abundance during Solar System Formation. Icarus, 175, 1–14. doi: 10.1016/j.icarus.2004.10.012.Google Scholar
Peale, S. J. 1969. Generalized Cassini's Laws. Astron. J., 74, 483–489. doi: 10.1086/110825.Google Scholar
Pierazzo, E., Vickery, A. M., and Melosh, H. J. 1997. A Reevaluation of Impact Melt Production. Icarus, 127, 408–423. doi: 10.1006/icar.1997.5713.Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., et al. 1996. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas. Icarus, 124, 62–85. doi: 10.1006/icar.1996.0190.CrossRefGoogle Scholar
Rappaport, N., Bertotti, B., Giampieri, G., and Anderson, J. D. 1997. Doppler Measurements of the Quadrupole Moments of Titan. Icarus, 126, 313–323. doi: 10.1006/icar.1996.5661.CrossRefGoogle Scholar
Rappaport, N. J., Iess, L., Wahr, J., Lunine, J. I., et al. 2008. Can Cassini Detect a Subsurface Ocean in Titan from Gravity Measurements?Icarus, 194, 711–720. doi: 10.1016/j.icarus.2007.11.024.CrossRefGoogle Scholar
Ricard, Y., Sramek, O., and Dubuffet, F. 2009. A Multi-Phase Model of Runaway Core-Mantle Segregation in Planetary Embryos. Earth Planet. Sci. Lett., 284, 144–150. doi: 10.1016/j.epsl.2009.04.021.Google Scholar
Robuchon, G., Choblet, G., Tobie, G., Cadek, O., et al. 2010. Coupling of Thermal Evolution and Despinning of early Iapetus. Icarus, 207, 959–971. doi: 10.1016/j.icarus.2009.12.002.CrossRefGoogle Scholar
Safronov, V S. 1978. The Heating of the Earth during Its Formation. Icarus, 33, 3–12. doi: 10.1016/0019-1035(78)90019-2.Google Scholar
Safronov, V S. (ed.). 1969. Evoliutsiia doplanetnogo oblaka (English transl.: Evolution of the Protoplanetary Cloud and Formation of Earth and the Planets, NASA Tech. Transl. F-677, Jerusalem: Israel Sci. Transl. 1972). Moscow: Nauka.
Sasaki, T., Stewart, G. R., and Ida, S. 2010. Origin of the Different Architectures of the Jovian and Saturnian Satellite Systems. Astrophys. J., 714, 1052–1064. doi: 10.1088/0004-637X/714/2/1052.Google Scholar
Saumon, D., and Guillot, T. 2004. Shock Compression of Deuterium and the Interiors of Jupiter and Saturn. Astroph. J., 609, 1170–1180. doi: 10.1086/421257.CrossRefGoogle Scholar
Saur, J., Neubauer, F. M., and Glassmeier, K.-H. 2010. Induced Magnetic Fields in Solar System Bodies. Space Sci. Rev., 152, 391–421. doi: 10.1007/s11214-009-9581-y.Google Scholar
Schubert, G., Stevenson, D. J., and Ellsworth, K. 1981. Internal Structures of the Galilean Satellites. Icarus, 47, 46–59. doi: 10.1016/0019-1035(81)90090-7.CrossRefGoogle Scholar
Scott, H. P., Williams, Q., and Ryerson, F. J. 2002. Experimental Constraints on the Chemical Evolution of Large Icy Satellites. Earth Planet. Sci. Lett., 203, 399–412. doi: 10.1016/S0012-821X(02)00850-6.CrossRefGoogle Scholar
Sears, W. D. 1995. Tidal Dissipation in Oceans on Titan. Icarus, 113, 39–56. doi: 10.1006/icar. 1995.1004.Google Scholar
Sekine, Y., and Genda, H. 2012. Giant Impacts in the Saturnian System: A Possible Origin of Diversity in the Inner Mid-Sized Satellites. Planet. Space Sci., 63, 133–138. doi: 10.1016/j.pss.2011.05.015.Google Scholar
Sekine, Y., Genda, H., Sugita, S., Kadono, T., et al. 2011. Replacement and Late Formation of Atmospheric N2 on Undifferentiated Titan by Impacts. Nature Geos., 4, 359–362. doi: 10.1038/ngeo1147.Google Scholar
Senshu, H., Kuramoto, K., and Matsui, T. 2002. Thermal Evolution of a Growing Mars. J. Geophys. Res. (Planets), 107, 5118. doi: 10.1029/2001JE001819.Google Scholar
Simões, F., Grard, R., Hamelin, M., Lopez-Moreno, J. J., et al. 2007. A New Numerical Model for the Simulation of ELF Wave Propagation and the Computation of Eigenmodes in the Atmosphere of Titan: Did Huygens Observe any Schumann Resonance?Planet. Space Sci., 55, 1978–1989. doi: 10.1016/j.pss.2007.04.016.Google Scholar
Sloan, E. D. Jr., 1998. Clathrate Hydrates of Natural Gases. Second ed. New York: Marcel Dekker Inc.
Sohl, F., Sears, W. D., and Lorenz, R. D. 1995. Tidal Dissipation on Titan. Icarus, 115, 278–294. doi: 10.1006/icar.1995.1097.Google Scholar
Sohl, F., Hussmann, H., Schwenker, B., and Spohn, T. 2003. Interior Structure Models and Tidal Love Numbers of Titan. J. Geophys. Res., 108(E12), 5130.Google Scholar
Sohl, F., Choukroun, M., Kargel, J., Kimura, J., et al. 2010. Subsurface Water Oceans on Icy Satellites: Chemical Composition and Exchange Processes. Space Sci. Rev., 153, 485–510. doi: 10.1007/s11214-010-9646-y.Google Scholar
Solomatov, V. S. 1995. Scaling of Temperature- and Stress-Dependent Viscosity Convection. Physics of Fluids, 7, 266–274. doi: 10.1063/1.868624.Google Scholar
Sotin, C., and Tobie, G. 2004. Internal Structure and Dynamics of the Large Icy Satellites. Comptes Rendus Physique, 5, 769–780. doi: 10.1016/j.crhy.2004.08.001.Google Scholar
Sotin, C., Mitri, G., Rappaport, N., Schubert, G., et al. 2009. Titan's Interior Structure. In Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini- Huygens. Springer., pp. 61–73. doi: 10.1007/978-1-4020-9215-2_4.CrossRef
Squyres, S. W., Reynolds, R. T., Summers, A. L., and Shung, F. 1988. Accretional Heating of the Satellites of Saturn and Uranus. J. Geophys. Res., 93, 8779–8794. doi: 10.1029/JB093iB08p08779.Google Scholar
Stevenson, D. J. 2000. Limits on the Variation of Thickness of Europa's Ice Shell. In Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Inst. Technical Report, vol. 31, p. 1506.Google Scholar
Stiles, B. W., Kirk, R. L., Lorenz, R. D., Hensley, S., et al. and the Cassini RADAR Team. 2008. Determining Titan's Spin State from Cassini RADAR Images. Astron. J., 135, 1669–1680. doi: 10.1088/0004-6256/135/5/1669.CrossRefGoogle Scholar
Stiles, B. W., Hensley, S., Gim, Y., Bates, D. M., etal. and the Cassini RADAR Team. 2009. Determining Titan Surface Topography from Cassini SAR Data. Icarus, 202, 584–598.Google Scholar
Stiles, B. W., Kirk, R. L., Lorenz, R. D., Hensley, S., et al. and the Cassini RADAR Team. 2010. Erratum: “Determining Titan's Spin State from Cassini Radar Images” (2008, AJ, 135, 1669). Astron. J., 139, 311. doi: 10.1088/0004-6256/139/1/311.Google Scholar
Stofan, E. R., Elachi, C., Lunine, J. I., and the Cassini RADAR team. 2007. The Lakes of Titan. Nature, 445, 61–64. doi: 10.1038/nature05438.CrossRefGoogle Scholar
Thomas, C., Picaud, S., Mousis, O., and Ballenegger, V 2008. A Theoretical Investigation into the Trapping of Noble Gases by Clathrates on Titan. Planet. Space Sci., 56, 1607–1617. doi: 10.1016/j.pss.2008.04.009.Google Scholar
Thrane, K., Bizzarro, M., and Baker, J. A. 2006. Extremely Brief Formation Interval for Refractory Inclusions and Uniform Distribution of 26Al in the Early Solar System. Astroph. J., 646, L159-L162. doi: 10.1086/506910.Google Scholar
Tobie, G., Mocquet, A., and Sotin, C. 2005a. Tidal Dissipation within Large Icy Satellites: Applications to Europa and Titan. Icarus, 177, 534–549. doi: 10.1016/j.icarus.2005.04.006.Google Scholar
Tobie, G., Grasset, O., Lunine, J. I., Mocquet, A., etal. 2005b. Titan's Internal Structure Inferred from a Coupled Thermal-Orbital Model. Icarus, 175, 496–502. doi: 10.1016/j.icarus.2004.12.007.Google Scholar
Tobie, G., Lunine, J. I., and Sotin, C. 2006. Episodic Outgassing as the Origin of Atmospheric Methane on Titan. Nature, 440, 61–64.Google Scholar
Tobie, G., Choukroun, M., Grasset, O., Le Mouelic, S., et al. 2009. Evolution of Titan and Implications for Its Hydrocarbon Cycle. Phil. Trans. R. Soc. A, 367, 617–631. doi: 10.1098/rsta.2008.0246.Google Scholar
Tobie, G., Gautier, D., and Hersant, F. 2012. Titan's Bulk Composition Constrained by Cassini-Huygens: Implication for Internal Outgassing. Astrophys. J., 752(June), 125. doi: 10.1088/0004-637X/752/2/125.Google Scholar
Tokano, T., Van Hoolst, T., and Karatekin, O. 2011. Polar Motion of Titan Forced by the Atmosphere. J. Geophys. Res., 116(E15), E05002. doi: 10.1029/2010JE003758.CrossRefGoogle Scholar
Tonks, W. B., and Melosh, H. J. 1992. Core Formation by Giant Impacts. Icarus, 100, 326–346. doi: 10.1016/0019-1035(92)90104-F.Google Scholar
Turcotte, D. L., Willemann, R. J., Haxby, W. F., and Norberry, J. 1981. Role of Membrane Stresses in the Support of Planetary Topography. J. Geophys. Res., 86, 3951–3959. doi: 10.1029/JB086iB05p03951.Google Scholar
van der Waals, J. H., and Platteeuw, J. C. 1959. Clathrate Solutions. Advances in Chemical Physics, Vol.2. New York: Interscience.
Voss, L. F., Henson, B. F., and Robinson, J. M. 2007. Methane Thermodynamics in Nanoporous Ice: A New Methane Reservoir on Titan. J. Geophys. Res. (Planets), 112(E11), E05002. doi: 10.1029/2006JE002768.CrossRefGoogle Scholar
Waite, J. H., Niemann, H., Yelle, R. V., Kasprzak, W. T. et al. 2005. Ion Neutral Mass Spectrometer Results from the First Flyby of Titan. Science, 308, 982–986. doi: 10.1126/science.1110652.Google Scholar
Waite, J. H. Jr., Lewis, W. S., Magee, B. A., Lunine, J. I., et al. 2009. Liquid Water on Enceladus from Observations of Ammonia and 40Ar in the Plume. Nature, 460, 487–490. doi: 10.1038/nature08153.CrossRefGoogle Scholar
Xie, S., and Tackley, P. J. 2004. Evolution of Helium and Argon Isotopes in a Convecting Mantle. Phys. Earth Planet. Int., 146, 417–439. doi: 10.1016/j.pepi.2004.04.003.Google Scholar
Zahnle, K., Pollack, J. B., Grinspoon, D., and Dones, L. 1992. Impact-Generated Atmospheres over Titan, Ganymede, and Callisto. Icarus, 95, 1–23. doi: 10.1016/0019-1035(92)90187-C.CrossRefGoogle Scholar
Zebker, H. A., Gim, Y., Callahan, P., Hensley, S., et al., and the Cassini RADAR Team. 2009a. Analysis and Interpretation of Cassini Titan Radar Altimeter Echoes. Icarus, 200, 240–255. doi: 10.1016/j.icarus.2008.10.023.CrossRefGoogle Scholar
Zebker, H. A., Stiles, B., Hensley, S., Lorenz, R., et al. 2009b. Size and Shape of Saturn's Moon Titan. Science, 324, 921–923. doi: 10.1126/science.1168905.Google Scholar
Zolotov, M. Y. 2007. An Oceanic Composition on Early and Today's Enceladus. Geophys. Res. Lett., 34, L23203. doi: 10.1029/2007GL031234.Google Scholar
Zolotov, M. Y. 2010. Oceanic Chemical Evolution on Icy Moons. LPI Contributions, 1538, 5304.Google Scholar
Zolotov, M. Y., and Kargel, J. S. 2009. On the Chemical Composition of Europa's Icy Shell, Ocean, and Underlying Rocks. In Europa, R. T., Pappalardo, W. B., McKinnon, K. K., Khurana (eds.) Tucson: University of Arizona Press, p. 431.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×