Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T08:08:01.307Z Has data issue: false hasContentIssue false

11 - Titan's ionosphere

Published online by Cambridge University Press:  05 January 2014

M. Galand
Affiliation:
Imperial College London
A. J. Coates
Affiliation:
University College London
T. E. Cravens
Affiliation:
University of Kansas
J.-E. Wahlund
Affiliation:
Swedish Institute of Space Physics
Ingo Müller-Wodarg
Affiliation:
Imperial College London
Caitlin A. Griffith
Affiliation:
University of Arizona
Emmanuel Lellouch
Affiliation:
Observatoire de Paris, Meudon
Thomas E. Cravens
Affiliation:
University of Kansas
Get access

Summary

11.1 Introduction

An ionosphere is the ionized part of the upper atmosphere of a planet or a moon, a transition layer between the space environment and the lower atmosphere. At Titan, the ionosphere was first detected by the Voyager 1 radio occultation experiment (Bird et al., 1997). As Titan is located within Saturn's magnetosphere for most of the time with occasional incursions into its magnetosheath (and even rarer incursions into the solar wind), its ionosphere is a key layer in coupling Titan with Saturn's space environment. The question of whether Titan's ionosphere is produced primarily by solar radiation or electron precipitation from Saturn's magnetosphere has been under debate for several decades (e.g., Nagy and Cravens, 1998). This is not surprising, bearing in mind the complex and dynamic nature of both the magnetospheric forcing and of the magnetic field line configuration at Titan (see Chapter 12). For instance, while Titan does not have any significant intrinsic magnetic field, Saturn's magnetic field lines drape around and permeate its ionosphere. The draping changes significantly with the angle between the solar direction and the co-rotating plasma direction, which varies as Titan orbits around Saturn.

The Cassini spacecraft, which arrived at Saturn in July 2004, has explored Titan's ionosphere in detail through many close fly-bys, the first of which took place in October 2004. The resulting rich datasets from many instruments, combined with comprehensive analyses, have revealed the chemically and dynamically most complex ionosphere in the solar system.

Type
Chapter
Information
Titan
Interior, Surface, Atmosphere, and Space Environment
, pp. 376 - 418
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ågren, K., Wahlund, J.-E., Modolo, R., Lummerzheim, D., et al. 2007. On Magnetospheric Electron Impact Ionisation and Dynamics in Titan's Ram-Side and Polar Ionosphere – a Cassini Case Study. Ann. Geophys., 25(Nov.), 2359–2369. doi:10.5194/angeo-25-2359-2007.Google Scholar
Ågren, K., Wahlund, J.-E., Garnier, P., Modolo, R., et al. 2009. On the Ionospheric Structure of Titan. Planet. Space Sci., 57(Dec.), 1821–1827. doi:10.1016/j.pss.2009.04.012.Google Scholar
Ågren, K., Andrews, D. J., Buchert, S. C., Coates, A. J., et al. 2011. Detection of Currents and Associated Electric Fields in Titan's Ionosphere from Cassini Data. J. Geophys. Res., 116(A15), 4313. doi:10.1029/2010JA016100.Google Scholar
Ågren, K., Edberg, N. J. T., and Wahlund, J.-E. 2012. Detection of Negative Ions in the Deep Ionosphere of Titan during the Cassini T70 Flyby. Geophys. Res. Lett., 39(May), L201. doi:10.1029/2012GL051714.Google Scholar
Ajello, J. M., Stevens, M. H., Stewart, I., Larsen, K., et al. 2007. Titan Airglow Spectra from Cassini Ultraviolet Imaging Spectrograph (UVIS): EUV Analysis. Geophys. Res. Lett., 34(Dec.), 24204. doi:10.1029/2007GL031555.Google Scholar
Ajello, J. M., Gustin, J., Stewart, I., Larsen, K., et al. 2008. Titan Airglow Spectra from the Cassini Ultraviolet Imaging Spectrograph: FUV Disk Analysis. Geophys. Res. Lett., 35(Mar.), 06102. doi:10.1029/2007GL032315.Google Scholar
Anicich, V G., Wilson, P., and McEwan, M. J. 2004. A SIFT Ion-Molecule Study of Some Reactions in Titan's Atmosphere. Reactions of N+, N+, and HCN+ with CH4, C2H2, and C2H4. J. Amer. Soc. Mass Spectr., 15(Mar.), 1148–1155. doi:10.1016/S1044-0305(04)00197-7.Google Scholar
Backes, H., Neubauer, F. M., Dougherty, M. K., Achilleos, N., et al. 2005. Titan's Magnetic Field Signature during the First Cassini Encounter. Science, 308(May), 992–995. doi:10.1126/science.1109763.Google Scholar
Bilitza, D., and Hoegy, W. R. 1990. Solar Activity Variation of Ionospheric Plasma Temperatures. Adv. Sp. Res., 10, 81–90. doi:10.1016/0273-1177(90)90190-B.Google Scholar
Bird, M. K., Dutta-Roy, R., Asmar, S. W., and Rebold, T. A. 1997. Detection of Titan's Ionosphere from Voyager 1 Radio Occultation Observations. Icarus, 130(Dec.), 426–436. doi:10.1006/icar.1997.5831.Google Scholar
Borucki, W. J., and Whitten, R. C. 2008. Influence of High Abundances of Aerosols on the Electrical Conductivity of the Titan Atmosphere. Planet. Space Sci., 56(Jan.), 19–26. doi:10.1016/j.pss.2007.03.013.Google Scholar
Borucki, W. J., Whitten, R. C., Bakes, E. L. O., Barth, E., et al. 2005. Predictions of the Electrical Conductivity and Charging of the Aerosols in Titan's Atmosphere. Icarus, 181(Apr.), 527–544. doi:10.1016/j.icarus.2005.10.030.Google Scholar
Brace, L. H., and Theis, R. F. 1978. An Empirical Model of the Interrelationship of Electron Temperature and Density in the Daytime Thermosphere at Solar Minimum. Geophys. Res. Lett., 5(Apr.), 275–278. doi:10.1029/GL005i004p00275.Google Scholar
Brannon, J. F., Fox, J. L., and Porter, H. S. 1993. Evidence for Day-to-Night Ion Transport at Low Solar Activity in the Venus Pre-Dawn Ionosphere. Geophys. Res. Lett., 20(Dec.), 2739–2742. doi:10.1029/93GL02422.Google Scholar
Capone, L. A., Dubach, J., Whitten, R. C., Prasad, S. S., et al. 1980. Cosmic Ray Synthesis of Organic Molecules in Titan's Atmosphere. Icarus, 44(Oct.), 72–84. doi:10.1016/0019-1035(80)90056-1.Google Scholar
Capone, L. A., Dubach, J., Prasad, S. S., and Whitten, R. C. 1983. Galactic Cosmic Rays and N2 Dissociation on Titan. Icarus, 55(July), 73–82. doi:10.1016/0019-1035(83)90051-9.Google Scholar
Coates, A., Wellbrock, A., Lewis, G., Jones, G., et al. 2010 (May). Negative Ions at Titan and Enceladus: Recent Results. Page 13026 of >EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, vol. 12.Google Scholar
Coates, A. J. 2009. Interaction of Titan's Ionosphere with Saturn's Magnetosphere. Phil. Trans. Royal Soc. A, 367(Feb.), 773–788. doi:10.1098/rsta.2008.0248.Google Scholar
Coates, A. J., McAndrews, H. J., Rymer, A. M., Young, D. T., et al. 2005. Plasma Electrons Above Saturn's Main Rings: CAPS Observations. Geophys. Res. Lett., 32(June), 14. doi:10.1029/2005GL022694.Google Scholar
Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., et al. 2007a. Discovery of Heavy Negative Ions in Titan's Ionosphere. Geophys. Res. Lett., 34(Nov.), 22103. doi:10.1029/2007GL030978.Google Scholar
Coates, A. J., Crary, F. J., Young, D. T., Szego, K., et al. 2007b. Ionospheric Electrons in Titan's Tail: Plasma Structure during the Cassini T9 Encounter. Geophys. Res. Lett., 34(Oct.), 24. doi:10.1029/2007GL030919.Google Scholar
Coates, A. J., Frahm, R. A., Linder, D. R., Kataria, D. O., et al. 2008. Ionospheric Photoelectrons at Venus: Initial Observations by ASPERA-4 ELS. Planet. Space Sci., 56(May), 802–806. doi:10.1016/j.pss.2007.12.008.Google Scholar
Coates, A. J., Wellbrock, A., Lewis, G. R., Jones, G. H., et al. 2009. Heavy Negative Ions in Titan's Ionosphere: Altitude and Latitude Dependence. Planet. Space Sci., 57(Dec.), 1866–1871. doi:10.1016/j.pss.2009.05.009.Google Scholar
Coates, A. J., Wahlund, J.-E., Ågren, K., Edberg, N., et al. 2011a. Recent Results from Titan's Ionosphere. Space Sci. Rev., 162(Dec.), 85–111. doi:10.1007/s11214-011-9826-4.Google Scholar
Coates, A. J., Tsang, S. M. E., Wellbrock, A., Frahm, R. A., et al. 2011b. Ionospheric Photoelectrons: Comparing Venus, Earth, Mars and Titan. Planet. Space Sci., 59(Aug.), 1019–1027. doi:10.1016/j.pss.2010.07.016.Google Scholar
Crary, F. J., Magee, B. A., Mandt, K., Waite, J. H., et al. 2009. Heavy Ions, Temperatures and Winds in Titan's Ionosphere: Combined Cassini CAPS and INMS Observations. Planet. Space Sci., 57(Dec.), 1847–1856. doi:10.1016/j.pss.2009.09.006.Google Scholar
Cravens, T. E. 2004. Physics of Solar System Plasmas. Cambridge University Press.
Cravens, T. E., Crawford, S. L., Nagy, A. F., and Gombosi, T. I. 1983. A Two-Dimensional Model of the Ionosphere of Venus. J. Geophys. Res., 88(July), 5595–5606. doi:10.1029/JA088iA07p05595.Google Scholar
Cravens, T. E., Vann, J., Clark, J., Yu, J., et al. 2004. The Ionosphere of Titan: An Updated Theoretical Model. Adv. Sp. Res., 33, 212–215. doi:10.1016/j.asr.2003.02.012.Google Scholar
Cravens, T. E., Robertson, I. P., Clark, J., Wahlund, J.-E., et al. 2005. Titan's Ionosphere: Model Comparisons with Cassini Ta Data. Geophys. Res. Lett., 32(June), 12108. doi:10.1029/2005GL023249.Google Scholar
Cravens, T. E., Robertson, I. P., Waite, J. H., Yelle, R. V., et al. 2006. Composition of Titan's Ionosphere. Geophys. Res. Lett., 33(Apr.), 7105. doi:10.1029/2005GL025575.Google Scholar
Cravens, T. E., Robertson, I. P., Ledvina, S. A., Mitchell, D., etal. 2008. Energetic Ion Precipitation at Titan. Geophys. Res. Lett., 35(Feb.), 3103. doi:10.1029/2007GL032451.Google Scholar
Cravens, T. E., Yelle, R. V., Wahlund, J.-E., Shemansky, D. E., et al. 2009a. Composition and Structure of the Ionosphere and Thermosphere. Pages 259–295 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi:10.1007/978-1-4020-9215-2_4.
Cravens, T. E., Robertson, I. P., Waite, J. H., Yelle, R. V, et al. 2009b. Model-Data Comparisons for Titan's Nightside Ionosphere. Icarus, 199(Jan.), 174–188. doi:10.1016/j.icarus.2008.09.005.Google Scholar
Cravens, T. E., Richard, M., Ma, Y.-J., Bertucci, C., et al. 2010. Dynamical and Magnetic Field Time Constants for Titan's Ionosphere: Empirical Estimates and Comparisons with Venus. J. Geophys. Res., 115(A14), 8319. doi:10.1029/2009JA015050.Google Scholar
Cui, J., Galand, M., Yelle, R. V, Vuitton, V, et al. 2009a. Diurnal Variations of Titan's Ionosphere. J. Geophys. Res., 114(A13), 6310. doi:10.1029/2009JA014228.Google Scholar
Cui, J., Yelle, R. V, Vuitton, V, Waite, J. H., et al. 2009b. Analysis of Titan's Neutral Upper Atmosphere from Cassini Ion Neutral Mass Spectrometer Measurements. Icarus, 200(Apr.), 581–615. doi:10.1016/j.icarus.2008.12.005.Google Scholar
Cui, J., Galand, M., Yelle, R. V, Wahlund, J.-E., et al. 2010. Ion Transport in Titan's Upper Atmosphere. J. Geophys. Res., 115(A14), 6314. doi:10.1029/2009JA014563.Google Scholar
Cui, J., Galand, M., Coates, A. J., Zhang, T. L., et al. 2011. Suprathermal Electron Spectra in the Venus Ionosphere. J. Geophys. Res., 116(A15), 4321. doi:10.1029/2010JA016153.Google Scholar
Cui, J., Yelle, R.V, Strobel, D.F., Müller-Wodarg, I.C.F., et al. 2012. The CH4 structure in Titan's upper atmosphere revisited. J. Geophys. Res., 117(Nov.), E11006. doi:10:1029/2012JE004222.Google Scholar
de la Haye, V, Waite, J. H., Johnson, R. E., Yelle, R. V, et al. 2007. Cassini Ion and Neutral Mass Spectrometer Data in Titan's Upper Atmosphere and Exosphere: Observation of a Suprathermal Corona. J. Geophys. Res., 112(A11), 7309. doi:10.1029/2006JA012222.Google Scholar
Dobe, Z., Nagy, A. F., and Fox, J. L. 1995. A Theoretical Study Concerning the Solar Cycle Dependence of the Nightside Ionosphere of Venus. J. Geophys. Res., 100(Aug.), 14507–14514. doi:10.1029/95JA00331.Google Scholar
Dougherty, M. K., Kellock, S., Southwood, D. J., Balogh, A., et al. 2004. The Cassini Magnetic Field Investigation. Space Sci. Rev., 114(Sept.), 331–383. doi:10.1007/s11214-004-1432-2.Google Scholar
Edberg, N. J. T., Wahlund, J.-E., Ågren, K., Morooka, M. W., et al. 2010. Electron Density and Temperature Measurements in the Cold Plasma Environment of Titan: Implications for Atmospheric Escape. Geophys. Res. Lett., 37(Oct.), 20105. doi:10.1029/2010GL044544.Google Scholar
Edberg, N. J. T., Ågren, K., Wahlund, J.-E., Morooka, M. W., et al. 2011. Structured Ionospheric Outflow during the Cassini T55-T59 Titan Flybys. Planet. Space Sci., 59(June), 788–797. doi:10.1016/j.pss.2011.03.007.Google Scholar
Elphic, R. C., Brace, L. H., Theis, R. F., and Russell, C. T. 1984. Venus Dayside Ionospheric Conditions – Effects of Ionospheric Magnetic Field and Solar EUV Flux. Geophys. Res. Lett., 11(Feb.), 124–127. doi:10.1029/GL011i002p00124.Google Scholar
English, M. A., Lara, L. M., Lorenz, R. D., Ratcliff, P. R., et al. 1996. Ablation and Chemistry of Meteoric Materials in the Atmosphere of Titan. Adv. Sp. Res., 17, 157–160. doi:10.1016/0273-1177(95)00774-9.Google Scholar
Flasar, F. M., Achterberg, R. K., Conrath, B. J., Gierasch, P. J., et al. 2005. Titan's Atmospheric Temperatures, Winds, and Composition. Science, 308(May), 975–978. doi:10.1126/science.1111150.Google Scholar
Forme, F. R. E., Wahlund, J.-E., Opgenoorth, H. J., Persson, M. A. L., et al. 1992 (Mar.). Effects of Current Driven Instabilities on the Ion and Electron Temperatures in the Topside Ionosphere. Technical report, “Ionospheric Response to Particle Precipitation Within Aurora 28 p (SEE N93-11265 02-46).”
Fox, J. L. 2008. Morphology of the Dayside Ionosphere of Venus: Implications for Ion Outflows. J. Geophys. Res., 113(E12), 11001. doi:10.1029/ 2008JE003182.Google Scholar
Fox, J. L., and Yelle, R. V 1997. Hydrocarbon Ions in the Ionosphere of Titan. Geophys. Res. Lett., 24(Sept.), 2179. doi:10.1029/97GL02051.Google Scholar
Fulchignoni, M., Ferri, F., Angrilli, F., Ball, A. J., et al. 2005. In Situ Measurements of the Physical Characteristics of Titan's Environment. Nature, 438(Dec.), 785–791. doi:10.1038/nature04314.Google Scholar
Galand, M., Lilensten, J., Toublanc, D., and Maurice, S. 1999. The Ionosphere of Titan: Ideal Diurnal and Nocturnal Cases. Icarus, 140(July), 92–105. doi:10.1006/icar.1999.6113.Google Scholar
Galand, M., Yelle, R. V, Coates, A. J., Backes, H., et al. 2006. Electron Temperature of Titan's Sunlit Ionosphere. Geophys. Res. Lett., 33(Nov.), 21101. doi:10.1029/2006GL027488.Google Scholar
Galand, M., Moore, L., Charnay, B., Müller-Wodarg, I., et al. 2009. Solar primary and secondary ionization at Saturn. J. Geophys. Res., 114(June), A06313, doi:10.1029/2008JA013981.Google Scholar
Galand, M., Yelle, R., Cui, J., Wahlund, J.-E., et al. 2010. Ionization Sources in Titan's Deep Ionosphere. J. Geophys. Res., 115(A14), 7312. doi:10.1029/2009JA015100.Google Scholar
Galeev, A. A., and Zagdeev, R. Z. 1979. Nonlinear Plasma Theory. Rev. Plasma Phys., 7, 307.Google Scholar
Gan, L., and Cravens, T. E. 1992. Electron Impact Cross-Sections and Cooling Rates for Methane. Planet. Space Sci., 40(Nov.), 1535–1544. doi:10.1016/0032-0633(92)90050-X.Google Scholar
Gan, L., Keller, C. N., and Cravens, T. E. 1992. Electrons in the Ionosphere of Titan. J. Geophys. Res., 97(Aug.), 12137. doi:10.1029/92JA00300.Google Scholar
Gan, L., Cravens, T. E., and Keller, C. N. 1993. A Time-Dependent Model of Suprathermal Electrons at Titan. Page 171 of Gombosi, T. (ed.), 4th COSPAR Colloquium on Critical Problems in Plasma Environments of Non-Magnetic Planets, Ann Arbor, Michigan, USA, 24-27 August 1992. Elsevier Science.
Gronoff, G., Lilensten, J., Desorgher, L., and Flückiger, E. 2009a. Ionization Processes in the Atmosphere of Titan. I. Ionization in the Whole Atmosphere. Astron. Astrophys., 506(Nov.), 955–964. doi:10.1051/0004-6361/200912371.Google Scholar
Gronoff, G., Lilensten, J., and Modolo, R. 2009b. Ionization Processes in the Atmosphere of Titan. II. Electron Precipitation along Magnetic Field Lines. Astron. Astrophys., 506(Nov.), 965–970. doi:10.1051/0004-6361/200912125.Google Scholar
Gronoff, G., Mertens, C., Lilensten, J., Desorgher, L., et al. 2011. Ionization Processes in the Atmosphere of Titan. III. Ionization by High-Z Nuclei Cosmic Rays. Astron. Astrophys., 529(May), A143. doi:10.1051/0004-6361/201015675.Google Scholar
Gurnett, D. A., Kurth, W. S., Kirchner, D. L., Hospodarsky, G. B., et al. 2004. The Cassini Radio and Plasma Wave Investigation. Space Sci. Rev., 114(Sept.), 395–463. doi:10.1007/s11214-004-1434-0.Google Scholar
Hartle, R. E., Sittler, E. C., Ogilvie, K. W., Scudder, J. D., et al. 1982. Titan's Ion Exosphere Observed from Voyager 1. J. Geophys. Res., 87(Mar.), 1383–1394. doi:10.1029/JA087iA03p01383.Google Scholar
Hörst, S. M., Vuitton, V, and Yelle, R. V 2008. Origin of Oxygen Species in Titan's Atmosphere. J. Geophys. Res., 113(E12), 10006. doi:10.1029/2008JE003135.Google Scholar
Kakinami, Y., Watanabe, S., Liu, J.-Y., and Balan, N. 2011. Correlation between Electron Density and Temperature in the Topside Ionosphere. J. Geophys. Res., 116(A15), 12331. doi:10.1029/2011JA016905.Google Scholar
Keller, C. N., and Cravens, T. E. 1994. One-Dimensional Multispecies Hydrodynamic Models of the Wakeside Ionosphere of Titan. J. Geophys. Res., 99(Apr.), 6527–6536. doi:10.1029/93JA02681.Google Scholar
Keller, C. N., Cravens, T. E., and Gan, L. 1992. A Model of the Ionosphere of Titan. J. Geophys. Res., 97(Aug.), 12117. doi:10.1029/92JA00231.Google Scholar
Keller, C. N., Anicich, V G., and Cravens, T. E. 1998. Model of Titan's Ionosphere with Detailed Hydrocarbon Ion Chemistry. Planet. Space Sci., 46(Oct.), 1157–1174. doi:10.1016/S0032-0633(98)00053-1.Google Scholar
Kliore, A. J., Anderson, J. D., Armstrong, J. W., Asmar, S. W., et al. 2004. Cassini Radio Science. Space Sci. Rev., 115(Dec.), 1–70. doi:10.1007/s11214-004-1436-y.Google Scholar
Kliore, A. J., Nagy, A. F., Marouf, E. A., French, R. G., et al. 2008. First Results from the Cassini Radio Occultations of the Titan Ionosphere. J. Geophys. Res., 113(A12), 9317. doi:10.1029/2007JA012965.Google Scholar
Kliore, A. J., Nagy, A. F., Cravens, T. E., Richard, M. S., et al. 2011. Unusual Electron Density Profiles Observed by Cassini Radio Occultations in Titan's Ionosphere: Effects of Enhanced Magnetospheric Electron Precipitation?J. Geophys. Res., 116(A15), 11318. doi:10.1029/2011JA016694.Google Scholar
Koskinen, T. T., Yelle, R. V., Snowden, D. S., Lavvas, P., et al. 2011. The Mesosphere and Lower Thermosphere of Titan Revealed by Cassini/UVIS Stellar Occultations. Icarus, 216(Dec.), 507–534. doi:10.1016/j.icarus.2011.09.022.Google Scholar
Krasnopolsky, V. A. 2009. A Photochemical Model of Titan's Atmosphere and Ionosphere. Icarus, 201(May), 226–256. doi:10.1016/j.icarus.2008.12.038.Google Scholar
Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Livi, S., et al. 2004. Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan. Space Sci. Rev., 114(Sept.), 233–329. doi:10.1007/s11214-004-1410-8.Google Scholar
Lavvas, P., Yelle, R. V, and Vuitton, V 2009. The Detached Haze Layer in Titan's Mesosphere. Icarus, 201(June), 626–633. doi:10.1016/j.icarus.2009.01.004.Google Scholar
Lavvas, P., Galand, M., Yelle, R. V, Heays, A. N., et al. 2011. Energy Deposition and Primary Chemical Product's in Titans Upper Atmosphere. Icarus, 213(May), 233–251. doi:10.1016/j.icarus.2011.03.001.Google Scholar
Ledvina, S. A., Ma, Y.-J., and Kallio, E. 2008. Modeling and Simulating Flowing Plasmas and Related Phenomena. Space Sci. Rev., 139(Aug.), 143–189. doi:10.1007/s11214-008-9384-6.Google Scholar
Liang, M.-C., Yung, Y. L., and Shemansky, D. E. 2007. Photolytically Generated Aerosols in the Mesosphere and Thermosphere of Titan. Astrophys. J. Lett., 661(June), L199–L202. doi:10.1086/518785.Google Scholar
Lilensten, J., Witasse, O., Simon, C., Soldi-Lose, H., et al. 2005. Prediction of a N2++ Layer in the Upper Atmosphere of Titan. Geophys. Res. Lett., 32(Feb.), 3203. doi:10.1029/2004GL021432.Google Scholar
López-Moreno, J. J., Molina-Cuberos, G. J., Hamelin, M., Grard, R., et al. 2008. Structure of Titan's Low Altitude Ionized Layer from the Relaxation Probe Onboard HUYGENS. Geophys. Res. Lett., 35(Nov.), 22104. doi:10.1029/2008GL035338.Google Scholar
Luna, H., Michael, M., Shah, M. B., Johnson, R. E., et al. 2003. Dissociation of N2 in Capture and Ionization Collisions with Fast H+ and N+ Ions and Modeling of Positive Ion Formation in the Titan Atmosphere. J. Geophys. Res., 108(Apr.), 5033. doi:10.1029/2002JE001950.Google Scholar
Ma, Y.-J., Nagy, A. F., Cravens, T. E., Sokolov, I. V, et al. 2004. 3-D Global MHD Model Prediction for the First Close Flyby of Titan by Cassini. Geophys. Res. Lett., 31(Nov.), 22803. doi:10.1029/2004GL021215.Google Scholar
Ma, Y. J., Nagy, A. F., Cravens, T. E., Sokolov, I. V, et al. 2006. Comparisons between MHD Model Calculations and Observations of Cassini Flybys of Titan. J. Geophys. Res., 111(A10), 5207. doi:10.1029/2005JA011481.Google Scholar
Ma, Y. J., Russell, C. T., Nagy, A. F., Toth, G., et al. 2009. Time-Dependent Global MHD Simulations of Cassini T32 Flyby: From Magnetosphere to Magnetosheath. J. Geophys. Res., 114(A13), 3204. doi:10.1029/2008JA013676.Google Scholar
Ma, Y. J., Russell, C. T., Nagy, A. F., Toth, G., et al. 2011. The Importance of Thermal Electron Heating in Titan's Ionosphere: Comparison with Cassini T34 Flyby. J. Geophys. Res., 116(A15), 10213. doi:10.1029/2011JA016657.Google Scholar
McLain, J. L., Poterya, V., Molek, C. D., Babcock, L. M., et al. 2004. Flowing Afterglow Studies of the Temperature Dependencies for Dissociative Recombination of O+, CH+,C2H+, and C6H+ with Electrons. J. Phys. Chem. A, 108(32), 6704–6708. doi:10.1021/jp040215l.Google Scholar
Michael, M., Johnson, R. E., Leblanc, F., Liu, M., et al. 2005. Ejection of Nitrogen from Titan's Atmosphere by Magnetospheric Ions and Pick-Up Ions. Icarus, 175(May), 263–267. doi:10.1016/j.icarus.2004.11.004.Google Scholar
Michael, M., Tripathi, S. N., Arya, P., Coates, A., et al. 2011. High-Altitude Charged Aerosols in the Atmosphere of Titan. Planet. Space Sci., 59(July), 880–885. doi:10.1016/j.pss.2011.03.010.Google Scholar
Modolo, R., and Chanteur, G. M. 2008. A Global Hybrid Model for Titan's Interaction with the Kronian Plasma: Application to the Cassini Ta Flyby. J. Geophys. Res., 113(A12), 1317. doi:10.1029/2007JA012453.Google Scholar
Molina-Cuberos, G. J., López-Moreno, J. J., Rodrigo, R., Lara, L. M., et al. 1999. Ionization by Cosmic Rays of the Atmosphere of Titan. Planet. Space Sci., 47(Oct.), 1347–1354. doi:10.1016/S0032-0633(99)00056-2.Google Scholar
Molina-Cuberos, G. J., Lammer, H., Stumptner, W., Schwingenschuh, K., et al. 2001. Ionospheric Layer Induced by Meteoric Ionization in Titan's Atmosphere. Planet. Space Sci., 49(Feb.), 143–153. doi:10.1016/S0032-0633(00)00133-1.Google Scholar
Müller-Wodarg, I. C. F., Yelle, R. V, Mendillo, M., Young, L. A., et al. 2000. The Thermosphere of Titan Simulated by a Global Three-Dimensional Time-Dependent Model. J. Geophys. Res., 105, 20833–20856. doi:10.1029/2000JA000053.Google Scholar
Müller-Wodarg, I. C. F., Yelle, R. V, Borggren, N., and Waite, J. H. 2006. Waves and Horizontal Structures in Titan's Thermosphere. J. Geophys. Res., 111(A10), 12315. doi:10.1029/2006JA011961.Google Scholar
Müller-Wodarg, I. C. F., Yelle, R. V, Cui, J., and Waite, J. H. 2008. Horizontal Structures and Dynamics of Titan's Thermosphere. J. Geophys. Res., 113(E12), 10005. doi:10.1029/2007JE003033.Google Scholar
Nagy, A. F., and Cravens, T. E. 1998. Titan's Ionosphere: A Review. Planet. Space Sci., 46(Oct.), 1149–1155. doi:10.1016/S0032-0633(98)00049-X.Google Scholar
Nagy, A. F., Korosmezey, A., Kim, J., and Gombosi, T. I. 1991. A Two Dimensional Shock Capturing, Hydrodynamic Model of the Venus Ionosphere. Geophys. Res. Lett., 18(May), 801–804. doi:10.1029/91GL00362.Google Scholar
Novotny, O., Sivaraman, B., Rebrion-Rowe, C., Travers, D., et al. 2005. Recombination of Polycyclic Aromatic Hydrocarbon Photoions with Electrons in a Flowing Afterglow Plasma. J. Chem. Phys., 123(10), 104303. doi:10.1063/1.2000927.Google Scholar
Osborne, D. Jr., Lawson, P. A., and Adams, N. G. 2011. Flowing Afterglow Studies of Dissociative Electron-Ion Recombination for a Series of Single Ring Compounds at Room Temperature. Int. J. Mass Spectr., 305(1), 35–39. doi:10.1016/j.ijms.2011.05.003.Google Scholar
Papadopoulos, K. 1977. A Review of Anomalous Resistivity for the Ionosphere. Rev. Geophys. Space Phys., 15(Feb.), 113–127. doi:10.1029/RG015i001p00113.Google Scholar
Phillips, J. L., Luhmann, J. G., and Russell, C. T. 1985. Dependence of Venus Ionopause Altitude and Ionospheric Magnetic Field on Solar Wind Dynamic Pressure. Adv. Sp. Res., 5, 173–176. doi:10.1016/0273-1177(85)90286-8.Google Scholar
Rees, M. H. 1963. Auroral Ionization and Excitation by Incident Energetic Electrons. Planet. Space Sci., 11(Oct.), 1209. doi:10.1016/0032-0633(63)90252-6.Google Scholar
Rees, M. H. 1989. Physics and Chemistry of the Upper Atmosphere. Cambridge University Press, New York.
Richard, M. S., Cravens, T. E., Robertson, I. P., Waite, J. H., et al. 2011. Energetics of Titan's Ionosphere: Model Comparisons with Cassini Data. J. Geophys. Res., 116(A15), 9310. doi:10.1029/2011JA016603.Google Scholar
Robertson, I. P., Cravens, T. E., Waite, J. H., Yelle, R. V., et al. 2009. Structure of Titan's Ionosphere: Model Comparisons with Cassini Data. Planet. Space Sci., 57(Dec.), 1834–1846. doi:10.1016/j.pss.2009.07.011.Google Scholar
Roboz, A., and Nagy, A. F. 1994. The Energetics of Titan's ionosphere. J. Geophys. Res., 99(Feb.), 2087–2093. doi:10.1029/93JA02286.Google Scholar
Rosenqvist, L., Wahlund, J.-E., Ågren, K., Modolo, R., et al. 2009. Titan Ionospheric Conductivities from Cassini Measurements. Planet. Space Sci., 57(Dec.), 1828–1833. doi:10.1016/j.pss.2009.01.007.Google Scholar
Rymer, A. M., Smith, H. T., Wellbrock, A., Coates, A. J., et al. 2009. Discrete Classification and Electron Energy Spectra of Titan's Varied Magnetospheric Environment. Geophys. Res. Lett., 36(Aug.), 15109. doi:10.1029/2009GL039427.Google Scholar
Sagan, C., Khare, B. N., Thompson, W. R., McDonald, G. D., et al. 1993. Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter. Astrophys. J., 414(Sept.), 399–405. doi:10.1086/173086.Google Scholar
Schunk, R. W., and Nagy, A. F., 1978. Electron Temperatures in the F Region of the Ionosphere: Theory and Deservations. Rev. Geophys. Sp. Phys., 16(Aug.) 355–399.Google Scholar
Schunk, R., and Nagy, A. 2009. Ionospheres. Cambridge University Press.
Schunk, R. W., and Walker, J. C. G., 1970. Transport Properties of the Ionospheric Electron Gas. Planet. Space Sci., 18(Nov.), 1535–1550. doi:10.1016/0032-0633(70)90029-2.Google Scholar
Semaniak, J., Minaev, B. F., Derkatch, A. M., Hellberg, F., etal. 2001. Dissociative Recombination of HCNH+: Absolute Cross-Sections and Branching Ratios. Astrophys. J. Supp., 135(Aug.), 275–283. doi:10.1086/321797.Google Scholar
Shah, M. B., Latimer, C. J., Montenegro, E. C., Tucker, O. J., et al. 2009. The Implantation and Interactions of O+ in Titan's Atmosphere: Laboratory Measurements of Collision-induced Dissociation of N2 and Modeling of Positive Ion Formation. Astrophys. J., 703(Oct.), 1947–1954. doi:10.1088/0004-637X/703/2/1947.Google Scholar
Shemansky, D. E., Stewart, A. I. F., West, R. A., Esposito, L. W., et al. 2005. The Cassini UVIS Stellar Probe of the Titan Atmosphere. Science, 308(May), 978–982. doi:10.1126/science.1111790.Google Scholar
Sittler, E. C., Hartle, R. E., Bertucci, C., Coates, A., et al. 2009a. Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere. Pages 393–453 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi:10.1007/978- 1-4020-9215-2_6.
Sittler, E. C., Ali, A., Cooper, J. F., Hartle, R. E., et al. 2009b. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?Planet. Space Sci., 57(Nov.), 1547–1557. doi:10.1016/j.pss.2009.07.017.Google Scholar
Smith, H. T., Mitchell, D. G., Johnson, R. E., and Paranicas, C. P. 2009. Investigation of Energetic Proton Penetration in Titan's Atmosphere using the Cassini INCA Instrument. Planet. Space Sci., 57(Nov.), 1538–1546. doi:10.1016/j.pss.2009.03.013.Google Scholar
Srama, R., Kempf, S., Moragas-Klostermeyer, G., Helfert, S., et al. 2006. In Situ Dust Measurements in the Inner Saturnian System. Planet. Space Sci., 54(Aug.), 967–987. doi:10.1016/j.pss.2006.05.021.Google Scholar
Stamnes, K., and Rees, M. H. 1983a. Inelastic Scattering Effects on Photoelectron Spectra and Ionospheric Electron Temperature. J. Geophys. Res., 88(Aug.), 6301–6309. doi:10.1029/JA088iA08p06301.Google Scholar
Stamnes, K., and Rees, M. H. 1983b. Heating of Thermal Ionospheric Electrons by Suprathermal Electrons. Geophys. Res. Lett., 10(Apr.), 309–312. doi:10.1029/GL010i004p00309.Google Scholar
Stevens, M. H. 2001. The EUV Airglow of Titan: Production and Loss of N2c4(0)-X. J. Geophys. Res., 106(Mar.), 3685–3690. doi:10.1029/1999JA000329.Google Scholar
Stevens, M. H., Gustin, J., Ajello, J. M., Evans, J. S., et al. 2011. The Production of Titan's Ultraviolet Nitrogen Airglow. J. Geophys. Res., 116(A15), 5304. doi:10.1029/2010JA016284.Google Scholar
Strobel, D. F. 2008. Titan's Hydrodynamically Escaping Atmosphere. Icarus, 193(Feb.), 588–594. doi:10.1016/j.icarus.2007.08.014.Google Scholar
Tanaka, T., and Murawski, K. 1997. Three-Dimensional MHD Simulation of the Solar Wind Interaction with the Ionosphere of Venus: Results of Two-Component Reacting Plasma Simulation. J. Geophys. Res., 102(Sept.), 19805–19822. doi:10.1029/97JA01474.Google Scholar
Taylor, H. A., Brinton, H. C., Bauer, S. J., Hartle, R. E., et al. 1980. Global Observations of the Composition and Dynamics of the Ionosphere of Venus – Implications for the Solar Wind Interaction. J. Geophys. Res., 85(Dec.), 7765–7777. doi:10.1029/JA085iA13p07765.Google Scholar
Thissen, R., Witasse, O., Dutuit, O., Wedlund, C. S., et al. 2011. Doubly-Charged Ions in the Planetary Ionospheres: A Review. Phys. Chem. Chem. Phys., 13, 18264. doi:10.1039/c1cp21957j.Google Scholar
Ulusen, D., Luhmann, J. G., Ma, Y.-J., Ledvina, S., etal. 2010. Investigation of the Force Balance in the Titan Ionosphere: Cassini T5 Flyby Model/Data Comparisons. Icarus, 210(Dec.), 867–880. doi:10.1016/j.icarus.2010.07.004.Google Scholar
Vervack, R. J., Sandel, B. R., and Strobel, D. F. 2004. New Perspectives on Titan's Upper Atmosphere from a Reanalysis of the Voyager 1 UVS Solar Occultations. Icarus, 170(July), 91–112. doi:10.1016/j.icarus.2004.03.005.Google Scholar
Vigren, E., Semaniak, J., Hamberg, M., Zhaunerchyk, V., et al. 2012. Dissociative Recombination of Nitrile Ions with Implications for Titan's Upper Atmosphere. Planet. Space Sci., 60(Jan.), 102–106. doi:10.1016/j.pss.2011.03.001.Google Scholar
Vuitton, V, Yelle, R. V, and Anicich, V G. 2006. The Nitrogen Chemistry of Titan's Upper Atmosphere Revealed. Astrophys. J. Lett., 647(Aug.), L175–L178. doi:10.1086/507467.Google Scholar
Vuitton, V, Yelle, R. V, and McEwan, M. J. 2007. Ion Chemistry and N-Containing Molecules in Titan's Upper Atmosphere. Icarus, 191(Nov.), 722–742. doi:10.1016/j.icarus.2007.06.023.Google Scholar
Vuitton, V, Yelle, R. V, and Cui, J. 2008. Formation and Distribution of Benzene on Titan. J. Geophys. Res., 113(E12), 5007. doi:10.1029/2007JE002997.Google Scholar
Vuitton, V, Lavvas, P., Yelle, R. V, Galand, M., et al. 2009. Negative Ion Chemistry in Titan's Upper Atmosphere. Planet. Space Sci., 57(Nov.), 1558–1572. doi:10.1016/j.pss.2009.04.004.Google Scholar
Vuitton, V., Bonnet, J.-Y., Frisari, M., Thissen, R., et al. 2010. Very High Resolution Mass Spectrometry of HCN Polymers and Tholins. Faraday Discussions, 147, 495. doi:10.1039/c003758c.Google Scholar
Wahlund, J.-E., Bostrom, R., Gustafsson, G., Gurnett, D. A., et al. 2005. Cassini Measurements of Cold Plasma in the Ionosphere of Titan. Science, 308(May), 986–989. doi:10.1126/science.1109807.Google Scholar
Wahlund, J.-E., Galand, M., Müller-Wodarg, I., Cui, J., et al. 2009. On the Amount of Heavy Molecular Ions in Titan's Ionosphere. Planet. Space Sci., 57(Dec.), 1857–1865. doi:10.1016/j.pss.2009.07.014.Google Scholar
Waite, J. H., Lewis, W. S., Kasprzak, W. T., Anicich, V. G., et al. 2004. The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation. Space Sci. Rev., 114(Sept.), 113–231. doi:10.1007/s11214-004-1408-2.Google Scholar
Waite, J. H., Niemann, H., Yelle, R. V., Kasprzak, W. T., et al. 2005. Ion Neutral Mass Spectrometer Results from the First Flyby of Titan. Science, 308(May), 982–986. doi:10.1126/science.1110652.Google Scholar
Waite, J. H., Young, D. T., Cravens, T. E., Coates, A. J., etal. 2007. The Process of Tholin Formationin Titan's Upper Atmosphere. Science, 316(May), 870–875. doi:10.1126/science.1139727.Google Scholar
Wellbrock, A., Coates, A. J., Sillanpää, I., Jones, G. H., et al. 2012. Cassini Observations of Ionospheric Photoelectrons at Large Distances from Titan: Implications for Titan's Exospheric Environment and Magnetic Tail. J. Geophys. Res., 117(A16), 3216. doi:10.1029/2011JA017113.Google Scholar
Whitten, R. C., Baldwin, B., Knudsen, W. C., Miller, K. L., etal. 1982. The Venus Ionosphere at Grazing Incidence of Solar Radiation – Transport of Plasma to the Night Ionosphere. Icarus, 51(Aug.), 261–270. doi:10.1016/0019-1035(82)90082-3.Google Scholar
Whitten, R. C., McCormick, P. T., Merritt, D., Thompson, K. W., et al. 1984. Dynamics of the Venus Ionosphere – A Two-Dimensional Model Study. Icarus, 60(Nov.), 317–326. doi:10.1016/0019-1035(84)90192-1.Google Scholar
Wilson, E. H., and Atreya, S. K. 2004. Current State of Modeling the Photochemistry of Titan's Mutually Dependent Atmosphere and Ionosphere. J. Geophys. Res., 109(E18), 6002. doi:10.1029/2003JE002181.Google Scholar
Young, D. T., Berthelier, J. J., Blanc, M., Burch, J. L., et al. 2004. Cassini Plasma Spectrometer Investigation. Space Sci. Rev., 114(Sept.), 1–112. doi:10.1007/s11214-004-1406-4.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×