Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T18:37:34.336Z Has data issue: false hasContentIssue false

3 - Thermal structure of Titan's troposphere and middle atmosphere

Published online by Cambridge University Press:  05 January 2014

F. M. Flasar
Affiliation:
NASA/Goddard Space Flight Center
R. K. Achterberg
Affiliation:
University of Maryland
P. J. Schinder
Affiliation:
Cornell University
Ingo Müller-Wodarg
Affiliation:
Imperial College London
Caitlin A. Griffith
Affiliation:
University of Arizona
Emmanuel Lellouch
Affiliation:
Observatoire de Paris, Meudon
Thomas E. Cravens
Affiliation:
University of Kansas
Get access

Summary

3.1 Introduction

The thermal structure of an atmosphere is a product of radiative processes and dynamical transports. Indeed, the study of the distribution of temperature and pressure (as well as of winds and humidity) and its temporal behavior has played a key role in the development of terrestrial meteorology (Brunt, 1939). The distribution of gaseous constituents, produced by photo- or ion-chemistry, can affect atmospheric temperatures, if the gases are radiatively active, as does the distribution of clouds and aerosols. The redistribution of trace gases, clouds, and aerosols by atmospheric motions can materially affect an atmosphere's thermal structure.

Like Earth, Titan has a well defined troposphere, stratosphere, and mesosphere (the latter two layers comprise the middle atmosphere). Figure 3.1 depicts representative temperature profiles for the two atmospheres. Barometric pressure is used as the vertical coordinate. In these units the terrestrial and Titan profiles look roughly similar, except that Earth is much warmer, and its stratopause is at a higher pressure. Were the two sets of profiles depicted using geometric height instead of pressure as the vertical coordinate, Titan's temperature profile would look much more extended. This is mainly because its surface gravitational acceleration (g = 1.34 m s-2) is 14 percent that of Earth. Indeed, because Titan's atmosphere is so extended, the decrease of gravity with altitude matters.

Type
Chapter
Information
Titan
Interior, Surface, Atmosphere, and Space Environment
, pp. 102 - 121
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achterberg, R. K., Conrath, B. J., Gierasch, P. J., Flasar, F. M., et al. 2008a. Titan's Middle-Atmospheric Temperatures and Dynamics Observed by the Cassini Composite Infrared Spectrometer. Icarus, 194, 263–277. doi: 10.1016/j.icarus.2007.09.029.Google Scholar
Achterberg, R. K., Conrath, B. J., Gierasch, P. J., Flasar, F. M., et al. 2008b. Observation of a Tilt of Titan's Middle-Atmospheric Superrotation. Icarus, 197, 549–555. doi: 10.1016/j.icarus.2008.05.014.Google Scholar
Achterberg, R. K., Gierasch, P. J., Conrath, B. J., Flasar, F. M., et al. 2011. Temporal Variations of Titan's Middle Atmospheric Temperatures from 2004 to 2009 Observed by Cassini/CIRS. Icarus, 211, 686–698. doi: 10.1016/j.icarus.2010.08.009.Google Scholar
Anderson, C. M., and Samuelson, R. E. 2011. Titan's Aerosol and Stratospheric Ice Opacities between 18 and 500 μm: Vertical and Spectral Characteristics from Cassini CIRS. Icarus, 212, 762–778. doi: 10.1016/j.icarus.2011.01.024.Google Scholar
Andreotti, B., Fourrière, A., Ould-Kaddour, F., Murray, B., et al. 2009. Giant Aeolian Dune Size Determined by the Average Depth of the Atmospheric Boundary Layer. Nature, 457, 1120–1123. doi: 10.1038/nature07787.Google Scholar
Andrews, D. G., Holton, J. R., and Leovy, C. B. 1987. Middle Atmosphere Dynamics. New York: Academic Press.
Barnes, J. W., Lemke, L., Foch, R., McKay, C. P., et al. 2012. AVIATR – Aerial Vehicle for In-Situ and Airborne Titan Reconnaissance. A Titan Airplane Mission Concept. Experimental Astronomy, 33, 55–127. doi: 10.1007/s10686-011-9275-9.Google Scholar
Borysow, A., and Frommhold, L. 1986a. Collision-Induced Rototranslational Absorption Spectra of N2-N2 Pairs for Temperatures from 50 to 300 K. Astrophys. J., 311, 1043–1057. doi: 10.1086/164841.Google Scholar
Borysow, A., and Frommhold, L. 1986b. Theoretical Collision-Induced Rototranslational Absorption Spectra for Modeling Titan's Atmosphere - H2-N2 pairs. Astrophys. J., 303, 495–510. doi: 10.1086/164096.Google Scholar
Borysow, A., and Tang, C. 1993. Far Infrared CIA Spectra of N2-CH4 Pairs for Modeling of Titan's Atmosphere. Icarus, 105, 175–183. doi: 10.1006/icar.1993.1117.Google Scholar
Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., Holberg, J. B., et al. 1981. Extreme Ultraviolet Observations from Voyager 1 Encounter with Saturn. Science, 212, 206–211. doi: 10.1126/science.212.4491.206.Google Scholar
Brunt, D. 1939. Physical and Dynamical Meteorology, 2nd ed. Cambridge University Press.
Caldwell, J. 1978. Low Surface Pressure Models for Titan's Atmosphere. Pages 113–126 of D. M., Hunten and D., Morrison (eds.), The Saturn System. NASA Conference Publication, vol. 2068.
Cottini, V, Nixon, C. A., Jennings, D. E., de Kok, R., et al. 2012. Spatial and Temporal Variations in Titan's Surface Temperatures from Cassini CIRS Observations. Planet. Space Sci., 60, 62–71. doi: 10.1016/j.pss.2011.03.015.Google Scholar
Coustenis, A., Atreya, S. K., Balint, T., Brown, R. H., et al. 2009. TandEM: Titan and Enceladus Mission. Experimental Astronomy, 23, 893–946. doi: 10.1007/s10686-008-9103-z.Google Scholar
Coustenis, A., Jennings, D. E., Nixon, C. A., Achterberg, R. K., et al. 2010. Titan Trace Gaseous Composition from CIRS at the End of the Cassini-Huygens Prime Mission. Icarus, 207, 461–476. doi: 10.1016/j.icarus.2009.11.027.Google Scholar
Danielson, R. E., Caldwell, J. J., and Larach, D. R. 1973. An Inversion in the Atmosphere of Titan. Icarus, 20, 437–443.Google Scholar
Flasar, F. M. 1998. The Dynamic Meteorology of Titan. Planet. & Space Sci., 46, 1125–1147. doi: 10.1016/S0032-0633(97)00223-7.Google Scholar
Flasar, F. M., and Achterberg, R. K. 2009. The Structure and Dynamics of Titan's Middle Atmosphere. Royal Society of London Philosophical Transactions Series A, 367, 649–664. doi: 10.1098/rsta.2008.0242.Google Scholar
Flasar, F. M., Samuelson, R. E., and Conrath, B. J. 1981. Titan's Atmosphere: Temperature and Dynamics. Nature, 292, 693–698. doi: 10.1038/292693a0.Google Scholar
Flasar, F. M., Kunde, V. G., Abbas, M. M., Achterberg, R. K., et al. 2004. Exploring the Saturn System in the Thermal Infrared: The Composite Infrared Spectrometer. Space Sci. Rev., 115, 169–297. doi: 10.1007/s11214-004-1454-9.Google Scholar
Flasar, F. M., Baines, K. H., Bird, M. K., Tokano, T., et al. 2009. Atmospheric Dynamics and Meteorology. Pages 323–352 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi: 10.1007/978-1-4020-9215-2_3.
Fulchignoni, M., Ferri, F., Angrilli, F., Ball, A. J., etal. 2005. In Situ Measurements of the Physical Characteristics of Titan's Environment. Nature, 438, 785–791. doi: 10.1038/nature04314.Google Scholar
Gillett, F. C., Forrest, W. J., and Merrill, K. M. 1973. 8-13 Micron Observations of Titan. Astrophys. J. Lett., 184, L93-95. doi: 10.1086/181296.Google Scholar
Goody, R. M., and Yung, Y. L. 1989. Atmospheric Radiation: Theoretical Basis. 2nd ed., New York: Oxford University Press.
Griffith, C. A. 2009. Storms, Polar Deposits and the Methane Cycle in Titan's Atmosphere. Royal Society of London Philosophical Transactions Series A, 367, 713–728. doi: 10.1098/rsta.2008.0245.Google Scholar
Griffith, C. A., McKay, C. P., and Ferri, F. 2008. Titan's Tropical Storms in an Evolving Atmosphere. Astrophys. J. Lett., 687, L41–L44. doi: 10.1086/593117.Google Scholar
Griffith, C. A., Penteado, P., Rannou, P., Brown, R., et al. 2006. Evidence for a Polar Ethane Cloud on Titan. Science, 313, 1620–1622. doi: 10.1126/science.1128245.Google Scholar
Hanel, R., Conrath, B., Flasar, F. M., Kunde, V, et al. 1981. Infrared Observations of the Saturnian System from Voyager 1. Science, 212, 192–200. doi: 10.1126/science.212.4491.192.Google Scholar
Hinson, D. P., and Magalhães, J. A. 1991. Equatorial Waves in the Stratosphere of Uranus. Icarus, 94, 64–91. doi: 10.1016/0019-1035(91)90141-F.Google Scholar
Hinson, D. P., and Tyler, G. L. 1983. Internal Gravity Waves in Titan's Atmosphere Observed by Voyager Radio Occultation. Icarus, 54, 337–352. doi: 10.1016/0019-1035(83)90202-6.Google Scholar
Hunten, D. M. 1978. A Titan Atmosphere with a Surface Temperature of 200K. Pages 127–140 of D. M., Hunten and D., Morrison (eds.), The Saturn System. NASA Conference Publication, vol. 2068.
Hunten, D. M., Tomasko, M. G., Flasar, F. M., Samuelson, R. E., et al. 1984. Titan. Pages 671–759 of Gehrels, T. and Matthews, M. S. (eds.), Saturn. University of Arizona.
Jennings, D. E., Flasar, F. M., Kunde, V. G., Samuelson, R. E., et al. 2009. Titan's Surface Brightness Temperatures. Astrophys. J. Lett., 691, L103–L105. doi: 10.1088/0004-637X/691/2/L103.Google Scholar
Jennings, D. E., Cottini, V, Nixon, C. A., Flasar, F. M., et al. 2011. Seasonal Changes in Titan's Surface Temperatures. Astrophys. J. Lett., 737, L15–L17. doi: 10.1088/2041-8205/737/1/L15.Google Scholar
Karayel, E. T., and Hinson, D. P. 1997. Sub-Fresnel-Scale Vertical Resolution in Atmospheric Profiles from Radio Occultation. Radio Science, 32, 411–423.Google Scholar
Koskinen, T. T., Yelle, R. V, Snowden, D. S., Lavvas, P., et al. 2011. The Mesosphere and Lower Thermosphere of Titan Revealed by Cassini/UVIS Stellar Occultations. Icarus, 216, 507–534. doi: 10.1016/j.icarus.2011.09.022.Google Scholar
Lebonnois, S., Burgalat, J., Rannou, P., and Charnay, B. 2012. Titan Global Climate Model: A New 3-Dimensional Version of the IPSL Titan GCM. Icarus, 218(Mar.), 707–722. doi: 10.1016/j.icarus.2011.11.032.Google Scholar
Lewis, J. S. 1971. Satellites of the Outer Planets: Their Physical and Chemical Nature. Icarus, 15, 174–185. doi: 10.1016/0019-1035(71)90072-8.Google Scholar
Liang, M.-C., Yung, Y. L., and Shemansky, D. E. 2007. Photolytically Generated Aerosols in the Mesosphere and Thermosphere of Titan. Astrophys. J. Lett., 661, L199–L202. doi: 10.1086/518785.Google Scholar
Lindal, G. F., Wood, G. E., Hotz, H. B., Sweetnam, D. N., et al. 1983. The Atmosphere of Titan – an Analysis of the Voyager 1 Radio Occultation Measurements. Icarus, 53, 348–363. doi: 10.1016/0019-1035(83)90155-0.Google Scholar
Lipa, B., and Tyler, G. L. 1979. Statistical and Computational Uncertainties in Atmospheric Profiles from Radio Occultation – Mariner 10 at Venus. Icarus, 39, 192–208. doi: 10.1016/0019-1035(79)90163-5.Google Scholar
Lorenz, R. D., Claudin, P., Andreotti, B., Radebaugh, J., et al. 2010. A 3 km Atmospheric Boundary Layer on Titan Indicated by Dune Spacing and Huygens Data. Icarus, 205, 719–721. doi: 10.1016/j.icarus.2009.08.002.Google Scholar
McKay, C. P., Pollack, J. B., and Courtin, R. 1989. The Thermal Structure of Titan's Atmosphere. Icarus, 80, 23–53. doi: 10.1016/0019-1035(89)90160-7.Google Scholar
McKay, C. P., Pollack, J. B., and Courtin, R. 1991. The Greenhouse and Antigreenhouse Effects on Titan. Science, 253, 1118–1121. doi: 10.1126/science.253.5024.1118.Google Scholar
McKay, C. P., Griffith, C. A., Ferri, F., and Fulchignoni, M. 2009. Comparing Methane and Temperature Profiles on Titan in 1980 and 2005. Planet. Space Sci., 57, 1996–2000. doi: 10.1016/j.pss.2009.08.008.Google Scholar
Mira, M., Valor, E., Boluda, R., Caselles, V, et al. 2007. Influence of Soil Water Content on the Thermal Infrared Emissivity of Bare Soils: Implication for Land Surface Temperature Determination. J. Geophys. Res. (Earth Surface), 112, F4003. doi: 10.1029/2007JF000749.Google Scholar
Newman, C. E., Lee, C., Lian, Y., Richardson, M. I., et al. 2011. Stratospheric Superrotation in the Titan WRF Model. Icarus, 213, 636–654. doi: 10.1016/j.icarus.2011.03.025.Google Scholar
Niemann, H. B., Atreya, S. K., Demick, J. E., Gautier, D., et al. 2010. Composition of Titan's Lower Atmosphere and Simple Surface Volatiles as Measured by the Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer Experiment. J. Geophys. Res. (Planets), 115, 12006. doi: 10.1029/2010JE003659.Google Scholar
Pollack, J. B. 1973. Greenhouse Models of the Atmosphere of Titan. Icarus, 19, 43–58. doi: 10.1016/0019-1035(73)90138-3.Google Scholar
Samuelson, R. E. 1983. Radiative Equilibrium Model of Titan's Atmosphere. Icarus, 53, 364–387. doi: 10.1016/0019-1035(83)90156-2.Google Scholar
Samuelson, R. E., Hanel, R. A., Kunde, V. G., and Maguire, W. C. 1981. Mean Molecular Weight and Hydrogen Abundance of Titan's Atmosphere. Nature, 292, 688–693. doi: 10.1038/292688a0.Google Scholar
Schinder, P. J., Flasar, F. M., Marouf, E. A., French, R. G., et al. 2011. The Structure of Titan's Atmosphere from Cassini Radio Occultations. Icarus, 215, 460–474. doi: 10.1016/j.icarus.2011.07.030.Google Scholar
Schinder, P. J., Flasar, F. M., Marouf, E. A., French, R. G., et al. 2012. The Structure of Titan's Atmosphere from Cassini Radio Occultations: Occultations from the Prime and Equinox Missions. Icarus. 221, 1021–1031. doi: 10.1016/j.icarus.2012.10.021.Google Scholar
Shemansky, D. E., Stewart, A. I. F., West, R. A., Esposito, L. W., et al. 2005. The Cassini UVIS Stellar Probe of the Titan Atmosphere. Science, 308, 978–982. doi: 10.1126/science.1111790.Google Scholar
Sicardy, B., Ferri, F., Roques, F., Lecacheux, J., etal. 1999. The Structure of Titan's Stratosphere from the 28 Sgr Occultation. Icarus, 142, 357–390. doi: 10.1006/icar.1999.6219.Google Scholar
Sicardy, B., Colas, F., Widemann, T., Bellucci, A., et al. 2006. The Two Titan Stellar Occultations of 14 November 2003. J. Geophys. Res. (Planets), 111, E11S91. doi: 10.1029/2005JE002624.Google Scholar
Stofan, E. R., Lorenz, R. D., Lunine, J. I., Aharonson, O., et al. 2010. Titan Mare Explorer (TiME): First In Situ Exploration of an Extraterrestrial Sea. LPI Contributions, 1538, 5270.Google Scholar
Strobel, D. F., and Shemansky, D. E. 1982. EUV Emission from Titan's Upper Atmosphere – Voyager 1 Encounter. J. Geophys. Res., 87, 1361–1368. doi: 10.1029/JA087iA03p01361.Google Scholar
Strobel, D. F., Atreya, S. K., Bezard, B., Ferri, F., et al. 2009. Atmospheric Structure and Composition. Pages 235–257 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi: 10.1007/978- 1-4020-9215-2_0.
Teanby, N. A., de Kok, R., Irwin, P. G. J., Osprey, S., et al. 2008. Titan's Winter Polar Vortex Structure Revealed by Chemical Tracers. J. Geophy. Res. (Planets), 113, 12003. doi: 10.1029/2008JE003218.Google Scholar
Tokano, T. 2005. Meteorological Assessment of the Surface Temperatures on Titan: Constraints on the Surface Type. Icarus, 173, 222–242. doi: 10.1016/j.icarus.2004.08.019.Google Scholar
Tokano, T. 2010. Westward Rotation of the Atmospheric Angular Momentum Vector of Titan by Thermal Tides. Planet. Space Sci., 58, 814–829. doi: 10.1016/j.pss.2010.01.001.Google Scholar
Tokano, T., and Neubauer, F. M. 2002. Tidal Winds on Titan Caused by Saturn. Icarus, 158, 499–515. doi: 10.1006/icar.2002.6883.Google Scholar
Tokano, T., Ferri, F., Colombatti, G., Mäkinen, T., et al. 2006. Titan's Planetary Boundary Layer Structure at the Huygens Landing Site. J. Geophys. Res., 111(E08), E08007. doi: 10.1029/2006JE002704.Google Scholar
Tomasko, M. G., Bezard, B., Doose, L., Engel, S., et al. 2008. Heat Balance in Titan's Atmosphere. Planet. Space Sci., 56, 648–659. doi: 10.1016/j.pss.2007.10.012.Google Scholar
Trafton, L. 1972. On the Possible Detection H2 in Titan's Atmosphere. Astrophys. J., 285–293. doi: 10.1086/151556.Google Scholar
Tyler, G. L., Eshleman, V. R., Anderson, J. D., Levy, G. S., et al. 1981. Radio Science Investigations of the Saturn System with Voyager 1 – Preliminary Results. Science, 212, 201–206. doi: 10.1126/science.212.4491.201.Google Scholar
Vervack, R. J., Sandel, B. R., and Strobel, D. F. 2004. New Perspectives on Titan's Upper Atmosphere from a Reanalysis of the Voyager 1 UVS Solar Occultations. Icarus, 170, 91–112. doi: 10.1016/j.icarus.2004.03.005.Google Scholar
West, R. A., Balloch, J., Dumont, P., Lavvas, P., et al. 2011. The Evolution of Titan's Detached Haze Layer Near Equinox in 2009. Geophys. Res. Lett., 380, 6204. doi: 10.1029/2011GL046843.Google Scholar
Williams, K. E., McKay, C. P., and Persson, F. 2012. The Surface Energy Balance at the Huygens Landing Site and the Moist Surface Conditions on Titan. Planet. Space Sci., 60, 376–385. doi: 10.1016/j.pss.2011.11.005.Google Scholar
Yelle, R. V. 1991. Non-LTE Models of Titan's Upper Atmosphere. Astrophys. J., 383, 380–400. doi: 10.1086/170796.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×