Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-17T01:52:30.186Z Has data issue: false hasContentIssue false

12 - Skin Coloration

Published online by Cambridge University Press:  05 August 2012

Michael P. Muehlenbein
Affiliation:
Indiana University, Bloomington
Get access

Summary

Human skin is functionally hairless and exhibits a wide range of natural colors from the most deeply saturated dark brown to pinkish off-white. Differences between people in skin color are readily perceived and have been used as the basis for classifying people into groups referred to as races or race-color identities (Harris et al.,1993). The array of colors observed in the skin of modern humans is greater than that of any other single mammalian species, and is the product of natural selection (Jablonski and Chaplin, 2000), despite some arguments to the contrary (Blum, 1961; Frost, 1988; Robins, 1991; Aoki, 2002). Skin pigmentation in humans evolved primarily to regulate the amount of ultraviolet radiation (UVR) penetrating the skin and, thus, modify its bioactive effects.

Color is imparted to skin by a variety of different substances, which are visible to varying degrees in different people. The most important of these substances is the pigment, melanin, which is produced in specialized cells called melanocytes within the skin. In people with very pale skin, the skin gets most of its color from the bluish-white connective tissue of the dermis and from oxyhemoglobin and deoxyhemoglobin associated with red blood cells circulating in the capillaries of the dermis. The red color produced by circulating hemoglobin becomes more obvious, especially on the face, when the arterioles dilate and become engorged with blood as a result of prolonged exercise or sympathetic nervous stimulation caused by embarrassment or anger (Jablonski, 2006).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, W. C., Fox, R. H., Fry, A. J., et al. (1975). Thermoregulation during marathon running in cool, moderate, and hot environments. Journal of Applied Physiology, 38(6), 1030–1037.CrossRefGoogle ScholarPubMed
Adams, W. C., Mack, G. W., Langhans, G. W., et al. (1992). Effects of varied air velocity on sweating and evaporative rates during exercise. Journal of Applied Physiology, 73, 2668–2674.CrossRefGoogle ScholarPubMed
Agar, N. and Young, A. R. (2005). Melanogenesis: a photoprotective response to DNA damage?Mutation Research, 571, 121–132.CrossRefGoogle ScholarPubMed
Alaluf, S., Atkins, D., Barrett, K., et al. (2002). Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin. Pigment Cell Research, 15, 112–118.CrossRefGoogle ScholarPubMed
Ancans, J., Tobin, D. J., Hoogduijn, M. J., et al. (2001). Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells. Experimental Cell Research, 268, 26–35.CrossRefGoogle ScholarPubMed
Amaral, L. Q. D. (1996). Loss of body hair, bipedality and thermoregulation. Comments on recent papers in the Journal of Human Evolution. Journal of Human Evolution, 30(4), 357–366.CrossRefGoogle Scholar
,Anonymous (1983). Long-term effects of ethanol consumption on folate status of monkeys. Nutrition Reviews, 41(7), 226–228.Google Scholar
Aoki, K. (2002). Sexual selection as a cause of human skin colour variation: Darwin's hypothesis revisited. Annals of Human Biology, 29, 589–608.CrossRefGoogle ScholarPubMed
Armas, L. A. G., Dowell, S., Akhter, M., et al. (2007). Ultraviolet-B radiation increases serum 25-hydroxyvitamin D levels: The effect of UVB dose and skin color. Journal of the American Academy of Dermatology, 57, 588–593.CrossRefGoogle ScholarPubMed
Armstrong, B. K. and Kricker, A. (2001). The epidemiology of solar radiation and skin cancer. In Sun Protection in Man, Giacomoni, P. U. (ed.). Amsterdam: Elsevier Science, pp. 131–153.CrossRefGoogle Scholar
Aroca, P., Urabe, K., Kobayashi, T., et al. (1993). Melanin biosynthesis patterns following hormonal stimulation. Journal of Biological Chemistry, 268, 25650–25655.Google ScholarPubMed
Bahadoran, P., Ortonne, J.-P., King, R. A., et al. (2003). Albinism. In Fitzpatrick's Dermatology in General Medicine, Freedberg, I. M., Eisen, A. Z., Wolff, K., et al. (eds), 6th edn. New York: McGraw-Hill, pp. 826–835.Google Scholar
Bailey, L. B. (1995). Folate requirements and dietary recommendations. In Folate in Health and Disease, Bailey, L. B. (ed.). New York: Marcel Dekker, Inc., pp. 123–151.Google Scholar
Barker, D., Dixon, K., Medrano, E. E., et al. (1995). Comparison of the responses of human melanocytes with different melanin contents to ultraviolet B irradiation. Cancer Research, 55, 4041–4046.Google ScholarPubMed
Barton, N. H. (1999). Clines in polygenic traits. Genetics Research, 74, 223–236.CrossRefGoogle ScholarPubMed
Besser, L. M., Williams, L. J. and Cragan, J. D. (2007). Interpreting changes in the epidemiology of anencephaly and spina bifida following folic acid fortification of the US grain supply in the setting of long-term trends, Atlanta, Georgia, 1968–2003. Birth Defects Research Part A: Clinical and Molecular Teratology, 79(11), 730–736.CrossRefGoogle Scholar
Bjorn, L. O. and Wang, T. (2000). Vitamin D in an ecological context. International Journal of Circumpolar Health, 59, 26–32.Google Scholar
Blom, H. J., Shaw, G. M., Heijer, M., et al. (2006). Neural tube defects and folate: case far from closed. Nature Reviews Neuroscience, 7, 724–731.CrossRefGoogle ScholarPubMed
Blum, H. F. (1961). Does the melanin pigment of human skin have adaptive value?Quarterly Review of Biology, 36, 50–63.Google ScholarPubMed
Bouillon, R., Eelen, G., Verlinden, L., et al. (2006). Vitamin D and cancer. Journal of Steroid Biochemistry and Molecular Biology, 102, 156–162.CrossRefGoogle ScholarPubMed
Bower, C. and Stanley, F. J. (1989). Dietary folate as a risk factor for neural-tube defects: evidence from a case-control study in Western Australia. Medical Journal of Australia, 150, 613–619.Google ScholarPubMed
Bower, C. and Stanley, F. J. (1992). The role of nutritional factors in the aetiology of neural tube defects. Journal of Paediatrics and Child Health, 28, 12–16.CrossRefGoogle ScholarPubMed
Brace, C. L. (1963). Structural reduction in evolution. American Naturalist, 97, 39–49.CrossRefGoogle Scholar
Branda, R. F. and Eaton, J. W. (1978). Skin color and nutrient photolysis: an evolutionary hypothesis. Science, 201, 625–626.CrossRefGoogle ScholarPubMed
Brenner, M. and Hearing, V. J. (2008). The protective role of melanin against UV damage in human skin. Photochemistry and Photobiology, 84, 539–549.CrossRefGoogle ScholarPubMed
Brinnel, H., Cabanac, M. and Hales, J. R. S. (1987). Critical upper levels of body temperature, tissue thermosensitivity, and selective brain cooling in hyperthermia. In Heat Stress: Physical Exertion and Environment, Hales, J. R. S. and Richards, D. A. B. (eds). Amsterdam: Excerpta Medica, pp. 209–240.Google Scholar
Brunvand, L., Quigstad, E., Urdal, P., et al. (1996). Vitamin D deficiency and fetal growth. Early Human Development 45, 27–33.CrossRefGoogle ScholarPubMed
Buccimazza, S. S., Molteno, C. D. and Viljoen, D. L. (1994). Prevalence of neural tube defects in Cape Town, South Africa. Teratology, 50(3), 194–199.CrossRefGoogle ScholarPubMed
Cabanac, M. and Brinnel, H. (1985). Blood flow in the emissary veins of the human head during hyperthermia. European Journal of Applied Physiology and Occupational Physiology, 54(2), 172–176.CrossRefGoogle ScholarPubMed
Cabanac, M. and Massonnet, B. (1977). Thermoregulatory responses as a function of core temperature in humans. Journal of Physiology, 265, 587–596.CrossRefGoogle ScholarPubMed
Caldwell, M. M., Bjorn, L. O., Bornman, J. F., et al. (1998). Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Journal of Photochemistry and Photobiology. B, Biology, 46, 40–52.CrossRefGoogle Scholar
Calvo, M. S., Whiting, S. J. and Barton, C. N. (2005). Vitamin D intake: a global perspective of current status. Journal of Nutrition, 135, 310.CrossRefGoogle ScholarPubMed
Cannell, J. J., Zasloff, M., Garland, C. F., et al. (2008). On the epidemiology of influenza. Virology Journal, 5, 29.CrossRefGoogle ScholarPubMed
Cantorna, M. T. and Mahon, B. D. (2005). D-hormone and the immune system. Journal of Rheumatology, 76, 11–20.Google ScholarPubMed
Cantorna, M. T., Yu, S. and Bruce, D. (2008). The paradoxical effects of vitamin D on type 1 mediated immunity. Molecular Aspects of Medicine, 29, 369–375.CrossRefGoogle ScholarPubMed
Caudill, M. A., Le, T., Moonie, S. A., et al. (2001). Folate status in women of childbearing age residing in southern California after folic acid fortification. Journal of the American College of Nutrition, 20(2), 129–134.CrossRefGoogle ScholarPubMed
Cerimele, D., Celleno, L. and Serri, F. (1990). Physiological changes in ageing skin. British Journal of Dermatology, 122, 13–20.CrossRefGoogle ScholarPubMed
Chaplin, G. (2001). The geographic distribution of environmental factors influencing human skin colouration. Thesis, Manchester Metropolitan University, Manchester, UK.Google Scholar
Chaplin, G. (2004). Geographic distribution of environmental factors influencing human skin coloration. American Journal of Physical Anthropology, 125, 292–302.CrossRefGoogle ScholarPubMed
Chaplin, G. and Jablonski, N. G. (1998). Hemispheric difference in human skin color. American Journal of Physical Anthropology, 107(2), 221–224.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Chedekel, M. R. (1995). Photophysics and photochemistry of melanin. In Melanin: its Role in Human Photoprotection, Zeise, L., Chedekel, M. R. and Fitzpatrick, T. B. (eds). Overland Park, KS: Valdenmar Publishing Co., pp. 11–22.Google Scholar
Chen, S., Glenn, D. J., Ni, W., et al. (2008). Expression of the vitamin D receptor is increased in the hypertrophic heart. Hypertension, 52, 1106–1112.CrossRefGoogle ScholarPubMed
Chen, T. C., Chimeh, F., Lu, Z., et al. (2007). Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Archives of Biochemistry and Biophysics, 460, 213–217.CrossRefGoogle ScholarPubMed
,Chimpanzee Sequencing and Analysis Consortium (The) (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.
Christenson, L. J., Borrowman, T. A., Vachon, C. M., et al. (2005). Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. Journal of the American Medical Association, 294, 681–690.CrossRefGoogle Scholar
Cleaver, J. E. (2000). Common pathways for ultraviolet skin carcinogenesis in the repair and replication of defective groups of xeroderma pigmentosum. Journal of Dermatological Science, 23(1), 1–11.CrossRefGoogle ScholarPubMed
Cleaver, J. E. and Crowley, E. (2002). UV damage, DNA repair and skin carcinogenesis. Frontiers in Bioscience, 7, 1024–1043.Google ScholarPubMed
Clemens, T. L., Henderson, S. L., Adams, J. S., et al. (1982). Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet, 1, 74–76.CrossRefGoogle ScholarPubMed
Clements, M. R., Johnson, L. and Fraser, D. R. (1987). A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature, 325, 62–65.CrossRefGoogle ScholarPubMed
Coburn, J. W., Hartenbower, D. L. and Norman, A. W. (1974). Metabolism and action of the hormone vitamin D. Its relation to diseases of calcium homeostasis. Western Journal of Medicine, 121(1), 22–44.Google ScholarPubMed
Copp, A. J., Fleming, A. and Greene, N. D. E. (1998). Embryonic mechanisms underlying the prevention of neural tube defects by vitamins. Mental Retardation and Developmental Disabilities Research Reviews, 4, 264–268.3.0.CO;2-G>CrossRefGoogle Scholar
Cosman, F., Nieves, J., Dempster, D., et al. (2007). Vitamin D economy in blacks. Journal of Bone and Mineral Research, 22, V34–V38.CrossRefGoogle ScholarPubMed
Cotter, J. D., Patterson, M. J. and Taylor, N. A. S. (1995). The topography of eccrine sweating in humans during exercise. European Journal of Applied Physiology, 71(6), 549–554.CrossRefGoogle ScholarPubMed
Cowles, R. B. (1959). Some ecological factors bearing on the origin and evolution of pigment in the human skin. American Naturalist, 93, 283–293.CrossRefGoogle Scholar
Cronin, K. J., Butler, P. E. M., Mchugh, M., et al. (1996). A one-year prospective study of burns in an Irish paediatric burns unit. Burns, 22, 221–224.CrossRefGoogle Scholar
Bree, A., Dusseldorp, M., Brouwer, I. A., et al. (1997). Folate intake in Europe: recommended, actual and desired intake. European Journal of Clinical Nutrition, 51(10), 643–660.CrossRefGoogle ScholarPubMed
Der-Petrossian, M., Födinger, M., Knobler, R., et al. (2007). Photodegradation of folic acid during extracorporeal photopheresis. British Journal of Dermatology, 156(1), 117–121.CrossRefGoogle ScholarPubMed
Diepgen, T. L. and Mahler, V. (2002). The epidemiology of skin cancer. British Journal of Dermatology, 146, 1–6.CrossRefGoogle ScholarPubMed
Djukic, A. (2007). Folate-responsive neurologic diseases. Pediatric Neurology, 37, 387–397.CrossRefGoogle ScholarPubMed
Duffy, D. L., Montgomery, G. W., Chen, W., et al. (2007). A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation. American Journal of Human Genetics, 80(2), 241–252.CrossRefGoogle ScholarPubMed
Dwyer, T., Blizzard, L., Ashbolt, R., et al. (2002). Cutaneous melanin density of caucasians measured by spectrophotometry and risk of malignent melanoma, basal cell carcinoma, and squamous cell carcinoma of the skin. American Journal of Epidemiology, 155, 614–621.CrossRefGoogle Scholar
Ebisch, I. M. W., Pierik, F. H., Jong, F. H., et al. (2006). Does folic acid and zinc sulphate intervention affect endocrine parameters and sperm characteristics in men?International Journal of Andrology, 29(2), 339–345.CrossRefGoogle ScholarPubMed
Epel, D., Hemela, K., Shick, M., et al. (1999). Development in the floating world: defenses of eggs and embryos against damage from UV radiation. American Zoologist, 39, 271–278.CrossRefGoogle Scholar
,Eurocat Working Group. (1991). Prevalence of neural tube defects in 20 regions of Europe and the impact of prenatal diagnosis, 1980–1986. Journal of Epidemiology and Community Health, 45(1), 52–58.CrossRef
Falk, D. (1990). Brain evolution in Homo: the “radiator” theory. Behavioral and Brain Sciences, 13, 333–381.CrossRefGoogle Scholar
Fisher, G. J., Kang, S., Varani, J., et al. (2002). Mechanisms of photoaging and chronological skin aging. Archives of Dermatological Research, 138(11), 1462–1470.Google ScholarPubMed
Fitzpatrick, T. B. (1988). The validity and practicality of sun reactive skin type I through VI. Archives of Dermatology, 124, 869–871.CrossRefGoogle Scholar
Fitzpatrick, T. B. and Ortonne, J.-P. (2003). Normal skin color and general considerations of pigmentary disorders. In Fitzpatrick's Dermatology in General Medicine, Freedberg, I. M., Eisen, A. Z., Wolff, K., et al. (eds), 6th edn. New York: McGraw-Hill, pp. 819–825.Google Scholar
Fitzpatrick, T. B., Seiji, M. and Mcgugan, A. D. (1961). Melanin pigmentation. New England Journal of Medicine, 265, 328–332.CrossRefGoogle ScholarPubMed
Fleet, J. C. (2008). Molecular actions of vitamin D contributing to cancer prevention. Molecular Aspects of Medicine, 29, 388–396.CrossRefGoogle ScholarPubMed
Fleming, A. and Copp, A. J. (1998). Embryonic folate metabolism and mouse neural tube defects. Science, 280, 2107–2109.CrossRefGoogle ScholarPubMed
Fogelman, Y., Rakover, Y. and Luboshitsky, R. (1995). High prevalence of vitamin D deficiency among Ethiopian women immigrants to Israel: exacerbation during pregnancy and lactation. Israel Journal of Medical Sciences, 31, 221–224.Google ScholarPubMed
Fox, H. M. and Vevers, G. (1960). Melanin. In The Nature of Animal Colours. London: Sidgwick and Jackson Ltd, pp. 22–47.Google Scholar
Frost, P. (1988). Human skin color: a possible relationship between its sexual dimorphism and its social perception. Perspectives in Biology and Medicine, 32, 38–59.CrossRefGoogle ScholarPubMed
Frost, P. (2005). Fair Women, Dark Men: the Forgotten Roots of Color Prejudice. Christchurch, New Zealand: Cybereditions.Google Scholar
Frost, P. (2007). Human skin-color sexual dimorphism: a test of the sexual selection hypothesis. American Journal of Physical Anthropology, 133, 779–780.CrossRefGoogle ScholarPubMed
Garland, C. F., Garland, F. C., Gorham, E. D., et al. (2006). The role of vitamin D in cancer prevention. American Journal of Public Health, 96, 252–261.CrossRefGoogle ScholarPubMed
Gibbs, S., Murli, S., Boer, G., et al. (2000). Melanosome capping of keratinocytes in pigmented reconstructed epidermis – effect of ultraviolet radiation and 3-isobutyl-1-methyl-xanthine on melanogenesis. Pigment Cell Research, 13, 458–466.CrossRefGoogle ScholarPubMed
Goor, Y. and Rubinstein, A. (1995). Vitamin D levels in dark-skinned people. Israel Journal of Medical Sciences, 31, 237–238.Google ScholarPubMed
Graf, J., Voisey, J., Hughes, I., et al. (2007). Promoter polymorphisms in the MATP (SLC45A2) gene are associated with normal human skin color variation. Human Mutation, 28, 710–717.CrossRefGoogle ScholarPubMed
Grant, W. B. (2008). Solar ultraviolet irradiance and cancer incidence and mortality. Advances in Experimental Medicine and Biology, 624, 16–30.CrossRefGoogle ScholarPubMed
Green, R. and Miller, J. W. (1999). Folate deficiency beyond megaloblastic anemia: Hyperhomocysteinemia and other malfunctions of dysfunctional folate status. Seminars in Hematology, 36, 47–64.Google Scholar
Gregory, J. F. III (1995). The bioavailability of folate. In Folate in Health and Disease, Bailey, L. B. (ed.). New York: Marcel Dekker, Inc., pp. 195–235.Google Scholar
Haass, N. K. and Herlyn, M. (2005). Normal human melanocyte homeostasis as a paradigm for understanding melanoma. Journal of Investigative Dermatology Symposium Proceedings, 10, 153–163.CrossRefGoogle ScholarPubMed
Haass, N. K., Smalley, K. S. M., Li, L., et al. (2005). Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Research, 18, 150–159.CrossRefGoogle ScholarPubMed
Harms, L. R., Eyles, D. W., McGrath, J. J., et al. (2008). Developmental vitamin D deficiency alters adult behaviour in 129/SvJ and C57BL/6J mice. Behavioural Brain Research, 187(2), 343–350.CrossRefGoogle ScholarPubMed
Harris, M., Consorte, J. G., Lang, J., et al. (1993). Who are the whites? Imposed census categories and the racial demography of Brazil. Social Forces, 72, 451–462.CrossRefGoogle Scholar
Hathcock, J. N., Shao, A., Vieth, R., et al. (2007). Risk assessment for vitamin D. American Journal of Clinical Nutrition, 85, 6–18.CrossRefGoogle ScholarPubMed
Hennessy, A., Oh, C., Diffey, B., et al. (2005). Eumelanin and pheomelanin concentrations in human epidermis before and after UVB irradiation. Pigment Cell Research, 18, 220–223.CrossRefGoogle ScholarPubMed
Henry, H. L. and Norman, A. W. (1984). Vitamin D: metabolism and biological actions. Annual Review of Nutrition, 4, 493–520.CrossRefGoogle ScholarPubMed
Hill, M. E. (2002). Skin color and the perception of attractiveness among African Americans: does gender make a difference?Social Psychology Quarterly, 65, 77–91.CrossRefGoogle Scholar
Hitchcock, R. T. (2001). Ultraviolet Radiation, 2nd edn. Fairfax, VA: American Industrial Hygiene Association.Google Scholar
Holick, M. F. (1987). Photosynthesis of vitamin D in the skin: effect of environmental and life-style variables. Federal Proceedings, 46, 1876–1882.Google ScholarPubMed
Holick, M. F. (1995). Environmental factors that influence the cutaneous production of vitamin D. American Journal of Clinical Nutrition, 61, 638S–645S.CrossRefGoogle ScholarPubMed
Holick, M. F. (1997). Photobiology of vitamin D. In Vitamin D, Feldman, D., Glorieux, F. H. and Pike, J. W. (eds). San Diego, CA: Academic Press, pp. 33–39.Google Scholar
Holick, M. F. (2003). Evolution and function of vitamin D. Recent Results in Cancer Research, 164, 3–28.CrossRefGoogle ScholarPubMed
Holick, M. F., Maclaughlin, J. A. and Doppelt, S. H. (1981). Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science, 211, 590–593.CrossRefGoogle ScholarPubMed
Holick, M. F., Chen, T. C., Lu, Z., et al. (2007). Vitamin D and skin physiology: a D-lightful story. Journal of Bone and Mineral Research, 22, V28–V33.CrossRefGoogle ScholarPubMed
Hollis, B. W. (2005). Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D. Journal of Nutrition, 135, 317–322.CrossRefGoogle ScholarPubMed
Hollis, B. W. and Wagner, C. L. (2004a). Assessment of dietary vitamin D requirements during pregnancy and lactation. American Journal of Clinical Nutrition, 79, 717–726.Google ScholarPubMed
Hollis, B. W. and Wagner, C. L. (2004b). Vitamin D requirements during lactation: high-dose maternal supplementation as therapy to prevent hypovitaminosis D for both the mother and the nursing infant. American Journal of Clinical Nutrition, 80, 1752S–1758S.CrossRefGoogle Scholar
Hornyak, T. J. (2006). The developmental biology of melanocytes and its application to understanding human congenital disorders of pigmentation. Advances in Dermatology, 22, 201–218.CrossRefGoogle ScholarPubMed
Ito, S. (2003). A chemist's view of melanogenesis. Pigment Cell Research, 16, 230–236.CrossRefGoogle ScholarPubMed
,IUPAC-IUB Joint Commission on Biochemical Nomenclature (1982). Nomenclature of vitamin D. Molecular and Cellular Biochemistry, 49, 177–181.
Jablonski, N. G. (1992). Sun, skin and spina bifida: an exploration of the relationship between solar ultraviolet radiation, skin colour and neural tube defects. In Proceedings of the Fifth Annual Conference of the Australasian Society for Human Biology, Bruce, N. W. (ed.). Perth: Centre for Human Biology, pp. 455–462.Google Scholar
Jablonski, N. G. (1993). Quaternary environments and the evolution of primates in East Asia, with notes on two new specimens of fossil cercopithecidae from China. Folia Primatologica, 60, 118–132.CrossRefGoogle ScholarPubMed
Jablonski, N. G. (2004). The evolution of human skin and skin color. Annual Review of Anthropology, 33, 585–623.CrossRefGoogle Scholar
Jablonski, N. G. (2006). Skin: a Natural History. Berkeley, CA: University of California Press.Google Scholar
Jablonski, N. G. and Chaplin, G. (2000). The evolution of human skin coloration. Journal of Human Evolution, 39, 57–106.CrossRefGoogle ScholarPubMed
Jemal, A., Devesa, S. S., Hartge, P., et al. (2001). Recent trends in cutaneous melanoma incidence among whites in the United States. Journal of the National Cancer Institute, 93, 678–683.CrossRefGoogle ScholarPubMed
Jimbow, K., Quevedo, W. C., Fitzpatrick, T. B., et al. (1976). Some aspects of melanin biology: 1950–1975. Journal of Investigative Dermatology, 67, 72–89.CrossRefGoogle ScholarPubMed
John, P. R., Makova, K., Li, W. H., et al. (2003). DNA polymorphism and selection at the melanocortin-1 receptor gene in normally pigmented southern African individuals. Annals of the New York Academy of Sciences, 994, 299–306.CrossRefGoogle ScholarPubMed
Johnson, B. L. (1998). Vitiligo. In Ethnic Skin: Medical and Surgical, Johnson, B. L., Moy, R. L. and White, G. M. (eds). St. Louis, MO: Mosby, pp. 187–194.Google Scholar
Johnson, F. S., Mo, T. and Green, A. E. S. (1976). Average latitudinal variation in ultraviolet radiation at the Earth's surface. Photochemistry and Photobiology, 23, 179–188.CrossRefGoogle ScholarPubMed
Jones, G. (2008). Pharmacokinetics of vitamin D toxicity. American Journal of Clinical Nutrition, 88, 582S–586S.CrossRefGoogle ScholarPubMed
Jones, T. (2000). Shades of brown: the law of skin color. Duke Law Journal, 49, 1487–1557.CrossRefGoogle Scholar
Kappelman, J., Alçiçek, M. C., Kazanci, N., et al. (2008). First Homo erectus from Turkey and implications for migrations into temperate Eurasia. American Journal of Physical Anthropology, 135, 110–116.CrossRefGoogle ScholarPubMed
Kennedy, C., Bajdik, C. D., Willemze, R., et al. (2003). The influence of painful sunburns and lifetime sun exposure on the risk of actinic keratoses, seborrheic warts, melanocytic nevi, atypical nevi, and skin cancer. Journal of Investigative Dermatology, 120, 1087–1093.CrossRefGoogle ScholarPubMed
Kielbassa, C. and Epe, B. (2000). DNA damage induced by ultraviolet and visible light and its wavelength dependence. Methods in Enzymology, 319, 436–445.CrossRefGoogle ScholarPubMed
Kim, D. H., Sabour, S., Sagar, U. N., et al. (2008). Prevalence of hypovitaminosis D in cardiovascular diseases (from the National Health and Nutrition Examination Survey 2001 to 2004). American Journal of Cardiology, 102, 1540–1544.CrossRefGoogle Scholar
Kim, S. M., Kim, Y. K. and Hann, S.-K. (1999). Serum levels of folic acid and vitamin B12 in Korean patients with vitiligo. Yonsei Medical Journal, 40, 195–198.CrossRefGoogle ScholarPubMed
Kimball, S., Fuleihan, G. H. and Vieth, R. (2008). Vitamin D: a growing perspective. Critical Reviews in Clinical Laboratory Sciences, 45, 339–414.CrossRefGoogle ScholarPubMed
Kimlin, M. G. (2004). The climatology of vitamin D producing ultraviolet radiation over the United States. Journal of Steroid Biochemistry and Molecular Biology, 89–90(1–5), 479–483.CrossRefGoogle ScholarPubMed
Kittles, R. (1995). Nature, origin, and variation of human pigmentation. Journal of Black Studies, 26, 36–61.CrossRefGoogle Scholar
Kobayashi, N., Nakagawa, A., Muramatsu, T., et al. (1998). Supranuclear melanin caps reduce ultraviolet induced DNA photoproducts in human epidermis. Journal of Investigative Dermatology, 110, 806–810.CrossRefGoogle ScholarPubMed
Kollias, N. (1995a). Melanin and non-melanin protection. In Melanin: its Role in Human Photoprotection, Zeise, L., Chedekel, M. R. and Fitzpatrick, T. B. (eds). Overland Park, KS: Valdenmar Publishing Co., pp. 233–237.Google Scholar
Kollias, N. (1995b). The physical basis of skin color and its evaluation. Clinics in Dermatology, 13, 361–367.CrossRefGoogle ScholarPubMed
Kollias, N., Malallah, Y. H., Al-Ajmi, H., et al. (1996). Erythema and melanogenesis action spectra in heavily pigmented individuals as compared to fair-skinned Caucasians. Photodermatology, Photoimmunology and Photomedicine, 12, 183–188.CrossRefGoogle ScholarPubMed
Komaromy-Hiller, G., Nuttall, K. L. and Ashwood, E. R. (1997). Effect of storage on serum vitamin B12 and folate stability. Annals of Clinical and Laboratory Science, 27(4), 249–253.Google ScholarPubMed
Kongshoj, B., Thorleifsson, A. and Wulf, H. C. (2006). Pheomelanin and eumelanin in human skin determined by high-performance liquid chromatography and its relation to in vivo reflectance measurements. Photodermatology, Photoimmunology and Photomedicine, 22(3), 141–147.CrossRefGoogle ScholarPubMed
Kovacs, C. S. (2008). Vitamin D in pregnancy and lactation: maternal, fetal, and neonatal outcomes from human and animal studies. American Journal of Clinical Nutrition, 88, 520S–528S.CrossRefGoogle ScholarPubMed
Kreiter, S. R., Schwartz, R. P., Kirkman, H. N., et al. (2000). Nutritional rickets in African American breast-fed infants. Journal of Pediatrics, 137, 153–157.CrossRefGoogle ScholarPubMed
Lalueza-Fox, C., Rompler, H., Caramelli, D., et al. (2007). A melanocortin-1 receptor allele suggests varying pigmentation among Neanderthals. Science, 318, 1453–1455.CrossRefGoogle ScholarPubMed
Lamason, R. L., Mohideen, M.-A. P. K., Mest, J. R., et al. (2005). SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science, 310, 1782–1786.CrossRefGoogle ScholarPubMed
Lamberg-Allardt, C. (2006). Vitamin D in foods and as supplements. Progress in Biophysics and Molecular Biology, 92, 33–38.CrossRefGoogle ScholarPubMed
Langbein, L., Rogers, M. A., Praetzel, S., et al. (2005). Characterization of a novel human type II epithelial keratin K1b, specifically expressed in eccrine sweat glands. Journal of Investigative Dermatology, 125, 428–444.CrossRefGoogle ScholarPubMed
Lao, O., Gruijter, J. M., Duijn, K., et al. (2007). Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Annals of Human Genetics, 71(3), 354–369.CrossRefGoogle ScholarPubMed
Lasker, G. W. (1954a). Photoelectric measurement of skin color in a Mexican Mestizo population. American Journal of Physical Anthropology, 12, 115–122.CrossRefGoogle Scholar
Lasker, G. W. (1954b). Seasonal changes in skin color. American Journal of Physical Anthropology, 12, 553–558.CrossRefGoogle ScholarPubMed
Lee, M. M. C. and Lasker, G. W. (1959). The sun-tanning potential of human skin. Human Biology, 31, 252–260.Google ScholarPubMed
Lee, R. B. (1980). Lactation, ovulation, infanticide, and women's work: a study of hunter-gatherer population regulation. In Biosocial Mechanisms of Population Regulation, Cohen, M. N., Malpass, R. S. and Klein, H. G. (eds). New Haven, CT: Yale University Press, pp. 321–348.Google Scholar
Leiter, U. and Garbe, C. (2008). Epidemiology of melanoma and nonmelanoma skin cancer: the role of sunlight. Advances in Experimental Medicine and Biology, 624, 89–103.CrossRefGoogle ScholarPubMed
Li, D., Turi, T. G., Schuck, A., et al. (2001). Rays and arrays: the transcriptional program in the response of human epidermal keratinocytes to UVB illumination. Molecular Biology and Evolution, 15, 2533–2535.Google ScholarPubMed
Lips, P. (2006). Vitamin D physiology. Progress in Biophysics and Molecular Biology, 92, 4–8.CrossRefGoogle ScholarPubMed
Littleton, J. (1991). Vitamin D deficiency rickets: prevalence in early societies. In Living With Civilisation: Proceedings of the Australasian Society for Human Biology, Bruce, N. W. (ed.). Canberra, Australia: Centre for Human Biology, Australian National University, pp. 15–21.Google Scholar
Loomis, W. F. (1967). Skin-pigment regulation of vitamin-D biosynthesis in man. Science, 157, 501–506.CrossRefGoogle ScholarPubMed
Lucas, R. M., McMichael, A. J., Smith, W., et al. (2006). Solar Ultraviolet Radiation: Global Burden of Disease from Solar Ultraviolet Radiation. Geneva: World Health Organization.Google Scholar
Lucas, R. M., McMichael, A. J., Armstrong, B. K., et al. (2008a). Estimating the global disease burden due to ultraviolet radiation exposure. International Journal of Epidemiology, 37, 654–667.CrossRefGoogle ScholarPubMed
Lucas, R. M., Ponsonby, A. L., Pasco, J. A., et al. (2008b). Future health implications of prenatal and early-life vitamin D status. Nutrition Reviews, 66, 710–720.CrossRefGoogle ScholarPubMed
Lucock, M. (2000). Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Molecular Genetics and Metabolism, 71(1–2), 121–138.CrossRefGoogle ScholarPubMed
Lunn, P. G. (1994). Lactation and other metabolic loads affecting human reproduction. Annals of the New York Academy of Sciences, 709, 77–85.CrossRefGoogle ScholarPubMed
Mackintosh, J. A. (2001). The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. Journal of Theoretical Biology, 211(2), 101–113.CrossRefGoogle ScholarPubMed
Maclaughlin, J. and Holick, M. F. (1985). Aging decreases the capacity of human skin to produce vitamin D3. Journal of Clinical Investigation, 76, 1536–1538.CrossRefGoogle ScholarPubMed
Madison, K. C. (2003). Barrier function of the skin: “La raison d'être” of the epidermis. Journal of Investigative Dermatology, 121, 231–241.CrossRefGoogle ScholarPubMed
Madrigal, L. and Kelly, W. (2007). Human skin-color sexual dimorphism: a test of the sexual selection hypothesis. American Journal of Physical Anthropology, 132, 470–482.CrossRefGoogle ScholarPubMed
Madronich, S., Mckenzie, R. L., Bjorn, L. O., et al. (1998). Changes in biologically active ultraviolet radiation reaching the Earth's surface. Journal of Photochemistry and Photobiology B: Biology, 46, 5–19.CrossRefGoogle ScholarPubMed
Makova, K. and Norton, H. L. (2005). Worldwide polymorphism at the MC1R locus and normal pigmentation variation in humans. Peptides, 26, 1901–1908.CrossRefGoogle ScholarPubMed
Malvy, D. J.-M., Guinot, C., Preziosi, P., et al. (2000). Relationship between vitamin D status and skin phototype in general adult population. Photochemistry and Photobiology, 71, 466–469.2.0.CO;2>CrossRefGoogle ScholarPubMed
Marzullo, G. and Fraser, F. C. (2005). Similar rhythms of seasonal conceptions in neural tube defects and schizophrenia: a hypothesis of oxidant stress and the photoperiod. Birth Defects Research Part A: Clinical and Molecular Teratology, 73, 1–5.CrossRefGoogle ScholarPubMed
Mason, H. S., Ingram, D. J. E. and Allen, B. (1960). The free radical property of melanins. Archives of Biochemistry and Biophysics, 86, 225–230.CrossRefGoogle ScholarPubMed
Mastropaolo, W. and Wilson, M. A. (1993). Effect of light on serum B12 and folate stability. Clinical Chemistry, 39(5), 913.Google ScholarPubMed
Mathur, U., Datta, S. L. and Mathur, B. B. (1977). The effect of aminopterin-induced folic acid deficiency on spermatogenesis. Fertility and Sterility, 28(12), 1356–1360.CrossRefGoogle ScholarPubMed
Matsumura, Y. and Ananthawamy, H. N. (2004). Toxic effects of ultraviolet radiation on the skin. Toxicology and Applied Pharmacology, 195, 298–308.CrossRefGoogle ScholarPubMed
Matsuoka, L. Y., Wortsman, J., Haddad, J. G., et al. (1991). Racial pigmentation and the cutaneous synthesis of vitamin D. Archives of Dermatology, 127, 536–538.CrossRefGoogle ScholarPubMed
Mawer, E. B. and Davies, M. (2001). Vitamin D nutrition and bone disease in adults. Reviews in Endocrine and Metabolic Disorders, 2, 153.CrossRefGoogle ScholarPubMed
Mawer, E. B., Schaefer, K., Lumb, G. A., et al. (1971). The metabolism of isotopically labelled vitamin D3 in man: the influence of the state of vitamin D nutrition. Clinical Science, 40, 39–53.CrossRefGoogle Scholar
Mawer, E. B., Backhouse, J., Holman, C. A., et al. (1972). The distribution and storage of vitamin D and its metabolites in human tissues. Clinical Science, 43, 413–431.CrossRefGoogle ScholarPubMed
McGrath, J. J., Féron, F. P., Burne, T. H. J., et al. (2004). Vitamin D3 – implications for brain development. Journal of Steroid Biochemistry and Molecular Biology, 89–90, 557–560.CrossRefGoogle ScholarPubMed
McNulty, H. and Scott, J. M. (2008). Intake and status of folate and related B-vitamins: considerations and challenges in achieving optimal status. British Journal of Nutrition, 99(S3), S48–S54.CrossRefGoogle ScholarPubMed
Meredith, P. and Sarna, T. (2006). The physical and chemical properties of eumelanin. Pigment Cell Research, 19(6), 572–594.CrossRefGoogle ScholarPubMed
Minns, R. A. (1996). Folic acid and neural tube defects. Spinal Cord, 34, 460–465.CrossRefGoogle ScholarPubMed
Mitra, D. and Bell, N. H. (1997). Racial, geographic, genetic, and body habitus effects on vitamin D metabolism. In Vitamin D, Feldman, D., Glorieux, F. H. and Pike, J. W. (eds). San Diego, CA: Academic Press, pp. 521–532.Google Scholar
Miyamura, Y., Coelho, S. G., Wolber, R., et al. (2007). Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment Cell Research, 20, 2–13.CrossRefGoogle ScholarPubMed
Molloy, A. M., Mills, J. L., Kirke, P. N., et al. (1999). Folate status and neural tube defects. BioFactors, 10, 291–294.CrossRefGoogle ScholarPubMed
Montagna, W. (1971). Cutaneous comparative biology. Archives of Dermatology, 104, 577–591.CrossRefGoogle ScholarPubMed
Montagna, W. (1981). The consequences of having a naked skin. Birth Defects: Original Article Series, 17, 1–7.Google ScholarPubMed
Montes, L. F., Diaz, M. L., Lajous, J., et al. (1992). Folic acid and vitamin B12 in vitiligo: a nutritional approach. Cutis, 50, 39–42.Google ScholarPubMed
Murray, F. G. (1934). Pigmentation, sunlight, and nutritional disease. American Anthropologist, 36, 438–445.CrossRefGoogle Scholar
Myles, S., Somel, M., Tang, K., et al. (2007). Identifying genes underlying skin pigmentation differences among human populations. Human Genetics, 120, 613–621.CrossRefGoogle ScholarPubMed
Neer, R. M. (1975). The evolutionary significance of vitamin D, skin pigment, and ultraviolet light. American Journal of Physical Anthropology, 43, 409–416.CrossRefGoogle ScholarPubMed
Neuhouser, M. L., Beresford, S. A. A., Hickok, D. E., et al. (1998). Absorption of dietary and supplemental folate in women with prior pregnancies with neural tube defects and controls. Journal of the American College of Nutrition, 17(6), 625–630.CrossRefGoogle ScholarPubMed
Nielsen, K. P., Zhao, L., Stamnes, J. J., et al. (2006a). The importance of the depth distribution of melanin in skin for DNA protection and other photobiological processes. Journal of Photochemistry and Photobiology B: Biology, 82, 194–198.CrossRefGoogle ScholarPubMed
Nielsen, K. P., Zhao, L., Stamnes, J. J., et al. (2006b). The importance of the depth distribution of melanin in skin for DNA protection and other photobiological processes. Journal of Photochemistry and Photobiology B: Biology, 82, 194–198.CrossRefGoogle ScholarPubMed
Nordlund, J. J. (1995). Melanin and melanocytes: their function and significance from a clinician's perspective. In Melanin: its Role in Human Photoprotection, Zeise, L., Chedekel, M. R. and Fitzpatrick, T. B. (eds). Overland Park, KS: Valdenmar Publishing, pp. 183–193.Google Scholar
Norman, A. W. (2008). From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. American Journal of Clinical Nutrition, 88, 491S–499S.CrossRefGoogle ScholarPubMed
Norton, H. L. and Hammer, M. F. (2007). Sequence variation in the pigmentation candidate gene SLC24A5 and evidence for independent evolution of light skin in European and East Asian populations. American Journal of Physical Anthropology, 132(S44), 179.Google Scholar
Norton, H. L., Kittles, R. A., Parra, E., et al. (2007). Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Molecular Biology and Evolution, 24, 710–722.CrossRefGoogle ScholarPubMed
Nozza, J. M. and Rodda, C. P. (2001). Vitamin D deficiency in mothers of infants with rickets. Medical Journal of Australia, 175, 253–255.Google ScholarPubMed
Off, M. K., Steindal, A. E., Porojnicu, A. C., J, et al. (2005). Ultraviolet photodegradation of folic acid. Journal of Photochemistry and Photobiology B: Biology, 80(1), 47–55.CrossRefGoogle ScholarPubMed
Okonofua, F., Menon, R. K., Houlder, S., et al. (1987). Calcium, vitamin D and parathyroid hormone relationships in pregnant Caucasian and Asian women and their neonates. Annals of Clinical Biochemistry, 24, 22–28.CrossRefGoogle ScholarPubMed
Olivier, G. (1960). Pratique Anthropologique. Paris: Vigot Freres.Google Scholar
Ortonne, J. P. (1990). The effects of ultraviolet exposure on skin melanin pigmentation. Journal of International Medical Research, 18, 8C–17C.Google ScholarPubMed
Ortonne, J. P. (2002). Photoprotective properties of skin melanin. British Journal of Dermatology, 146, 7–10.CrossRefGoogle ScholarPubMed
Pandolf, K. B., Gange, R. W., Latzka, W. A., et al. (1992). Human thermoregulatory responses during heat exposure after artificially induced sunburn. American Journal of Physiology, 262, R610–R616.Google ScholarPubMed
Parra, E. J. (2007). Human pigmentation variation: evolution, genetic basis, and implications for public health. American Journal of Physical Anthropology, 134, 85–105.CrossRefGoogle Scholar
Pathak, M. A. (1995). Functions of melanin and protection by melanin. In Melanin: its Role in Human Photoprotection, Zeise, L., Chedekel, M. R. and Fitzpatrick, T. B. (eds). Overland Park, KS: Valdenmar Publishing Co., pp. 125–134.Google Scholar
Pfeifer, G. P., You, Y. H. and Besaratinia, A. (2005). Mutations induced by ultraviolet light. Mutation Research, 571, 19–31.CrossRefGoogle ScholarPubMed
Pflaum, M., Kielbassa, C., Garmyn, M., et al. (1998). Oxidative DNA damage induced by visible light in mammalian cells: extent, inhibition by antioxidants and genotoxic effects. Mutation Research, 408, 137–146.CrossRefGoogle ScholarPubMed
Post, P. W., Daniels, F. and Binford, R. T. (1975). Cold injury and the evolution of “white” skin. Human Biology, 47, 65–80.Google ScholarPubMed
Prota, G. (1992a). Melanin-producing cells. In Melanins and Melanogenesis, Prota, G. (ed.). San Diego, CA: Academic Press, pp. 14–33.CrossRefGoogle ScholarPubMed
Prota, G. (1992b). Photobiology and photochemistry of melanogenesis. In Melanins and Melanogenesis, Prota, G. (ed.). San Diego, CA: Academic Press, pp. 208–224.CrossRefGoogle ScholarPubMed
Quevedo, W. C. (1969). Influence of age and UV on the populations of DOPA-positive melanocytes in human skin. Journal of Investigative Dermatology, 52(3), 287–290.CrossRefGoogle ScholarPubMed
Rana, B. K., Hewett-Emmett, D., Jin, L., et al. (1999). High polymorphism at the human melanocortin 1 receptor locus. Genetics, 151, 1547–1557.Google ScholarPubMed
Rees, J. L. (2000). The melanocortin 1 receptor (MC1R): more than just red hair. Pigment Cell Research, 13, 135–140.CrossRefGoogle ScholarPubMed
Rees, J. L. (2003). Genetics of hair and skin color. Annual Review of Genetics, 37, 67–90.CrossRefGoogle ScholarPubMed
Rees, J. L. (2004). The genetics of sun sensitivity in humans. American Journal of Human Genetics, 75, 739–751.CrossRefGoogle ScholarPubMed
Rees, J. L. (2008). Melanoma: what are the gaps in our knowledge. PLoS Medicine, 5, e122.CrossRefGoogle ScholarPubMed
Relethford, J. H. (1997). Hemispheric difference in human skin color. American Journal of Physical Anthropology, 104, 449–457.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Rhodes, A. R., Albert, L. S., Barnhill, R. L., et al. (1991). Sun-induced freckles in children and young adults: a correlation of clinical and histopathologic features. Cancer, 67, 1990–2001.3.0.CO;2-P>CrossRefGoogle Scholar
Rigel, D. S. (2008). Cutaneous ultraviolet exposure and its relationship to the development of skin cancer. Journal of the American Academy of Dermatology, 58, S129–S132.CrossRefGoogle ScholarPubMed
Roberts, D. F. (1977). Human pigmentation: its geographical and racial distribution and biological significance. Journal of the Society of Cosmetic Chemists, 28, 329–342.Google Scholar
Roberts, D. F. and Kahlon, D. P. S. (1976). Environmental correlations of skin colour. Annals of Human Biology 3(1), 11–22.CrossRefGoogle ScholarPubMed
Robins, A. H. (1991). Biological Perspectives on Human Pigmentation. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Rogers, A. R., Iltis, D. and Wooding, S. (2004). Genetic variation at the MC1R locus and the time since loss of human body hair. Current Anthropology, 45, 105–124.CrossRefGoogle Scholar
Rondilla, J. L. and Spickard, P. (2007). Is Lighter Better? Skin-Tone Discrimination among Asian Americans. Lanham, MD: Rowman and Littlefield.Google Scholar
Rothschild, L. J. (1999). The influence of UV radiation on protistan evolution. Journal of Eukaryotic Microbiology, 46, 548–555.CrossRefGoogle ScholarPubMed
Rouzaud, F., Kadekaro, A. L., Abdel-Malek, Z. A., et al. (2005). MC1R and the response of melanocytes to ultraviolet radiation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571, 133–152.CrossRefGoogle ScholarPubMed
Rubegni, P., Cevenini, G., Barbini, P., et al. (1999). Quantitative characterization and study of the relationship between constitutive-facultative skin color and phototype in Caucasians. Photochemistry and Photobiology, 70(3), 303–307.Google ScholarPubMed
Saraiya, M., Glanz, K., Briss, P. A., et al. (2004). Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review. American Journal of Preventive Medicine, 27, 422–466.Google ScholarPubMed
Sarna, T. and Swartz, H., M. (1998). The physical properties of melanins. In The Pigmentary System, Physiology and Pathophysiology, Nordlund, J., Boissy, J. R. E., Hearing, V. J., et al. (eds). New York: Oxford University Press, pp. 333–357.Google Scholar
Sato, K. and Dobson, R. L. (1970). Regional and individual variations in the function of the human eccrine sweat gland. Journal of Investigative Dermatology 54(6), 443–449.CrossRefGoogle ScholarPubMed
Schallreuter, K. U. (2007). Advances in melanocyte basic science research. Dermatologic Clinics, 25, 283–291.CrossRefGoogle ScholarPubMed
Schreier, W. J., Schrader, T. E., Koller, F. O., et al. (2007). Thymine dimerization in DNA is an ultrafast photoreaction. Science, 315(5812), 625–629.CrossRefGoogle ScholarPubMed
Scott, J. M. (2007). Reduced folate status is common and increases disease risk. It can be corrected by daily ingestion of supplements or fortification. Novartis Foundation Symposium, 282, 105–117.CrossRefGoogle ScholarPubMed
Shaw, N. J. (2003). Vitamin D deficiency rickets. In Vitamin D and Rickets, Hochberg, Z. E. (ed.). Basel, Switzerland: Karger, pp. 93–104.CrossRefGoogle Scholar
Shibasaki, M., Wilson, T. E. and Crandall, C. G. (2006). Neural control and mechanisms of eccrine sweating during heat stress and exercise. Journal of Applied Physiology, 100(5), 1692–1701.CrossRefGoogle ScholarPubMed
Shriver, M. D., Parra, E. J., Dios, S., et al. (2003). Skin pigmentation, biogeographical ancestry and admixture mapping. Human Genetics, 1–14.Google ScholarPubMed
Sinha, R. P. and Hader, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical and Photobiological Science, 1(4), 225–236.CrossRefGoogle ScholarPubMed
Skull, S. A., Ngeow, J. Y. Y., Biggs, B. A., et al. (2003). Vitamin D deficiency is common and unrecognized among recently arrived adult immigrants from the horn of Africa. International Medical Journal, 33, 47–51.CrossRefGoogle ScholarPubMed
Soininen, L., Järvinen, S. and Pukkala, E. (2002). Cancer incidence among Sami in northern Finland, 1979–1998. International Journal of Cancer, 100, 342–346.CrossRefGoogle Scholar
St-Arnaud, R. (2008). The direct role of vitamin D on bone homeostasis. Archives of Biochemistry and Biophysics, 473, 225–230.CrossRefGoogle ScholarPubMed
Steegmann, A. T. (1967). Frostbite of the human face as a selective force. Human Biology, 39, 131–144.Google ScholarPubMed
Steindal, A. H., Juzeniene, A., Johnsson, A., et al. (2006). Photodegradation of 5-methyltetrahydrofolate: biophysical aspects. Photochemistry and Photobiology, 82, 1651–1655.CrossRefGoogle ScholarPubMed
Sturm, R. A. (2006). A golden age of human pigmentation genetics. Trends in Genetics, 22, 464–468.CrossRefGoogle ScholarPubMed
Sturm, R. A., Teasdale, R. D. and Fox, N. F. (2001). Human pigmentation genes: identification, structure and consequences of polymorphic variation. Gene, 277, 49–62.CrossRefGoogle ScholarPubMed
Sturm, R. A., Duffy, D. L., Box, N. F., et al. (2003). Genetic association and cellular function of MC1R variant alleles in human pigmentation. Annals of the New York Academy of Sciences, 994, 348–358.CrossRefGoogle ScholarPubMed
Suh, J. R., Herbig, A. K. and Stover, P. J. (2001). New perspectives on folate catabolism. Annual Review of Nutrition, 21, 255–282.CrossRefGoogle ScholarPubMed
Sulaimon, S. S. and Kitchell, B. E. (2003). The biology of melanocytes. Veterinary Dermatology, 14, 57–65.CrossRefGoogle ScholarPubMed
Szabo, G., Gerald, A. B., Pathak, M. A., et al. (1969). Racial differences in the fate of melanosomes in human epidermis. Nature, 222, 1081–1082.CrossRefGoogle ScholarPubMed
Tadokoro, T., Kobayashi, N., Zmudzka, B. Z., et al. (2003). UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin. FASEB Journal, 17, 1177–1179.CrossRefGoogle ScholarPubMed
Tadokoro, T., Yamaguchi, Y., Batzer, J., et al. (2005). Mechanisms of skin tanning in different racial/ethnic groups in response to ultraviolet radiation. Journal of Investigative Dermatology, 124, 1326–1332.CrossRefGoogle ScholarPubMed
Tamura, T. and Halsted, C. H. (1983). Folate turnover in chronically alcoholic monkeys. Journal of Laboratory and Clinical Medicine, 101(4), 623–628.Google ScholarPubMed
Tasa, G. L., Murray, C. J. and Boughton, J. M. (1985). Reflectometer reports on human pigmentation. Current Anthropology, 26(4), 511–512.CrossRefGoogle Scholar
Thody, A. J., Higgins, E. M., Wakamatsu, K., et al. (1991). Pheomelanin as well as eumelanin is present in human epidermis. Journal of Investigative Dermatology, 97, 340–344.CrossRefGoogle ScholarPubMed
Thong, H. Y., Jee, S. H., Sun, C. C., et al. (2003). The patterns of melanosome distribution in keratinocytes of human skin as one determining factor of skin colour. British Journal of Dermatology, 149, 498–505.CrossRefGoogle ScholarPubMed
Tran, T. N. T., Schulman, J. and Fisher, D. E. (2008). UV and pigmentation: molecular mechanisms and social controversies. Pigment Cell and Melanoma Research, 21, 509–516.CrossRefGoogle ScholarPubMed
Meer, I. M., Boeke, A. J. P., Lips, P., et al. (2008). Fatty fish and supplements are the greatest modifiable contributors to the serum 25-hydroxyvitamin D concentration in a multiethnic population. Clinical Endocrinology, 68, 466–472.CrossRefGoogle Scholar
Nieuwpoort, F., Smit, N. P. M., Kolb, R., et al. (2004). Tyrosine-induced melanogenesis shows differences in morphologic and melanogenic preferences of melanosomes from light and dark skin types. Journal of Investigative Dermatology, 122, 1251–1255.CrossRefGoogle ScholarPubMed
Veierod, M. B., Weiderpass, E., Thorn, M., et al. (2003). A prospective study of pigmentation, sun exposure, and risk of cutaneous malignant melanoma in women. Journal of the National Cancer Institute, 95(20), 1530–1538.CrossRefGoogle ScholarPubMed
Vieth, R. (1999). Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. American Journal of Clinical Nutrition, 69, 842–856.CrossRefGoogle ScholarPubMed
Vieth, R. (2003). Effects of vitamin D on bone and natural selection of skin color: how much vitamin D nutrition are we talking about? In Bone Loss and Osteoporosis: an Anthropological Perspective, Agarwal, S. C. and Stout, S. D. (eds). New York: Kluwer Academic/Plenum Press, pp. 135–150.Google Scholar
Luschan, F. (1897). Beitrage zur Volkerkunde der Deutschen Schutzgebiete. Berlin: D. Reimer.Google Scholar
Vorobey, P., Steindal, A. E., Off, M. K., et al. (2006). Influence of human serum albumin on photodegradation of folic acid in solution. Photochemistry and Photobiology, 82(3), 817–822.CrossRefGoogle ScholarPubMed
Walsberg, G. E. (1988). Consequences of skin color and fur properties for solar heat gain and ultraviolet irradiance in two mammals. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 158, 213–221.CrossRefGoogle ScholarPubMed
Wassermann, H. P. (1965). Human pigmentation and environmental adaptation. Archives of Environmental Health, 11, 691–694.CrossRefGoogle ScholarPubMed
Wassermann, H. P. (1974). Ethnic Pigmentation. New York: Elsevier Publishing.Google Scholar
Webb, A. R. (2006). Who, what, where and when: influences on cutaneous vitamin D synthesis. Progress in Biophysics and Molecular Biology, 92, 17–25.CrossRefGoogle ScholarPubMed
Webb, A. R. and Holick, M. F. (1988). The role of sunlight in the cutaneous production of vitamin D3. Annual Review of Nutrition, 8, 375–399.CrossRefGoogle ScholarPubMed
Webb, A. R., Decosta, B. R. and Holick, M. F. (1989). Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. Journal of Clinical Endocrinology and Metabolism, 68, 882–887.CrossRefGoogle ScholarPubMed
Wheeler, P. E. (1985). The loss of functional body hair in man: the influence of thermal environment, body form and bipedality. Journal of Human Evolution, 14(1), 23–28.CrossRefGoogle Scholar
Williams, L. J., Rasmussen, S. A., Flores, A., et al. (2005). Decline in the prevalence of spina bifida and anencephaly by race/ethnicity: 1995–2002. Pediatrics, 116(3), 580–586.CrossRefGoogle Scholar
Wolff, A. E., Jones, A. N. and Hansen, K. E. (2008). Vitamin D and musculoskeletal health. Nature Clinical Practice Rheumatology, 4, 580–588.CrossRefGoogle ScholarPubMed
,World Health Organization (2002). Ultraviolet radiation: global solar UV index. http://www.who.int/mediacentre/factsheets/fs271/en/ (accessed 2008).
Young, A. R. (2006). Acute effects of UVR on human eyes and skin. Progress in Biophysics and Molecular Biology, 92, 80–85.CrossRefGoogle ScholarPubMed
Zareba, M., Szewczyk, G., Sarna, T., et al. (2006). Effects of photodegradation on the physical and antioxidant properties of melanosomes isolated from retinal pigment epithelium. Photochemistry and Photobiology, 82, 1024–1029.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×