To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ferruginous beidellites with Al:Fe atomic ratios up to 2.36 were obtained when solutions containing Al, Fe2+ and H4SiO4 were adjusted to pH 8.5 with Ca(OH)2 and incubated at 95 °C in the presence of CaCO3 as a pH buffer. Incubation took place under cyclic reducing and oxidizing conditions achieved by adding 2 mM hydrazine at 14–15-d intervals over a period of 10–13 weeks. During the 14–15-d cycle, atmospheric oxygen slowly diffused through the high-density polyethylene bottles used, causing a slow oxidation of Fe(II) to Fe(III). The infrared (IR) spectra of the products approached that of natural beidellite, but indicated little change in octahedral Al:Fe ratio in the products for starting Al:Fe ratios from 2.5 up to 3.5, which was the highest Al:Fe ratio at which a well-crystallized product was obtained. Chemical analysis showed the presence of more Al+Fe in the products than could be incorporated into a dioctahedral formula. After the excess was assigned to a hydroxy-aluminium interlayer, the formula of the most Al-rich beidellite was calculated to be 0.575Ca(Si6.85A1.15)(Al2.47Fe1.53)O20(OH)4. This composition lay within the range recorded for the ferruginous beidellites that form in Vertisols.
Nordstrandite from Lages represents the first occurrence of this mineral in an oxisoil that does not involve the influence of a calcareous substrate. This is also the first reported occurrence in Brazil. Nordstrandite occurs near the city of Lages only in the weathered bedrock facies, mostly where the circulation of meteoric water is restricted. There is also a close association between nordstrandite and the weathering of modified pseudoleucite structures. The interaction of meteoric water and feldspathic alkaline country rock with uncommon texture and mineralogy (rich in nepheline, sodalite, nosean, analcime and natrolite) promotes the development of solutions enriched in alkaline ions with basic pH, necessary to form nordstrandite. A detailed study by X-ray diffraction (XRD) and infrared (IR) spectroscopy in natural or chemically leached samples was performed to identify the Al(OH)3 polymorphs of gibbsite and nordstrandite.
Adsorption of neutral organic molecules and the monovalent organic cations methylene blue (MB) and crystal violet (CV) to sepiolite was determined experimentally and investigated by an adsorption model. The largest amounts of MB and CV adsorbed were about 4-fold of the cation exchange capacity (CEC) of sepiolite. Consequently, it was proposed that most of the above described adsorption was to neutral sites of the clay. The adsorption model considered combines the Gouy-Chapman solution and specific binding in a closed system. The model was extended by allowing cation adsorption to neutral sites of the clay, in addition to adsorption to negatively charged sites and adsorption to neutral complexes formed from 1 cation adsorbed to a negative surface site. The amount of available neutral sites was determined from the adsorption of the neutral molecule Triton-X 100 (TX100). The model could adequately simulate the adsorption of the neutral molecules TX100 and crown ether 15-crown-5 (15C5) as well as the organic cations. Due to aggregation of MB molecules in solution, their adsorption was somewhat less than that of CV at the larger added concentrations. A consideration of the molecular dimensions of TX100, MB and CV suggested that their adsorption was mostly to external sites of the clay and that their entry to the sepiolite channels was largely excluded. This interpretation is supported by infrared spectroscopy (IR) measurements, which show large perturbations of the peak corresponding to vibrations of external Si-OH groups of the clay and confirm complete occupancy of external sites by MB and CV.
The destruction of the crystal structure of kaolinite caused by mechanical forces was investigated by X-ray diffraction, thermal analysis, infrared spectroscopy, and specific surface area determination. Attention was also directed to the change of thermal reactions of milled kaolinite. Grinding experiments for 5 min, 10 min, and 1, 2, 4, 6, and 10 h were carried out in an AGO I planetary mill. After 1 h of grinding, the crystalline order of kaolin is destroyed; but the amorphization continues in the course of prolonged grinding. Grinding for 1 h produces a favorable state for forming mullite-type crystals after heating even at 1000°C.
It is shown that polytypes or stacking sequences of cronstedtite, an Fe-bearing trioctahedral 1:1 phyllosilicate, can be determined using near-atomic high-resolution transmission electron microscopy (HRTEM). By viewing along the [010], [310] and directions (orthohexagonal indexing), the four groups of the standard polytypes can be distinguished. Imaging along the [100], [110] and directions allows determination of the polytypes in each group. The polytypic sequences of groups A and C are intergrown at the monolayer level in cronstedtite from Lostwithiel, England, which is a new insight if compared with previous suggestions that layer stackings characteristic of different groups do not occur together. The HRTEM images also revealed the relationship between the layer polarity and the morphology of the cronstedtite crystals, where the tetrahedral sheet side points towards the top of the truncated pyramidal shape of the crystal.
The in-depth perturbation of vicinal water by the surfaces of montmorillonite layers was investigated by relating the swelling pressure, Π, of the montmorillonite layers to the H-O-H bending frequency, ν2, of the interlayer water. For this purpose, an oriented montmorillonite gel was deposited on a porous filter in an environmental chamber. On its underside the filter was in contact with a solution maintained at atmospheric pressure. By admitting nitrogen gas at a known pressure to the environmental chamber, water was squeezed from the gel into the solution until equilibrium was reached and Π equalled the applied pressure. Then the gel was divided into 2 parts. One part was used for the gravimetric determination of the water content, mw/mc. It was possible, therefore, to determine mw/mc as a function of Π. The other part of the sample was transferred to an FTIR spectrometer where the ν2 of the water within it was measured by attenuated total reflectance. Thus, the same samples were used to determine the dependence of both Π and ν2 on mw/mc. It was found that Π and ν2 were both exponential functions of mc/mw and so a linear relation was found between ln(Π + 1) and ln(ν2/ν2°), where ν2° is the H-O-H bending frequency of bulk water. These results strongly support the conclusion that the in-depth perturbation of the water by the surfaces of the montmorillonite layers is primarily responsible for both the development of Π and the departure of ν2 from ν2°.
Estimations of the external specific surface areas (S.S.A.) by the N2-BET method of clay separates that were further fractionated by the high gradient magnetic separation technique revealed that the magnetic fractions had consistently lower S.S.A. compared to non-magnetic fractions. This phenomenon has been attributed, in the past, to the intimate association of Fe-oxides with silicate clays. It is the contention of this study that this reasoning is insufficient due to the following reasons. X-ray diffractograms (XRD) confirmed that heavy minerals were abundant in the magnetic fractions of these clays. Total chemical analyses and energy dispersive X-ray analyses showed that these heavy minerals contained Fe and Ti, which were not completely extracted by the dithionite-citrate bicarbonate (DCB) treatments. Crystallinity and quantity of these oxides in the different fractions did not show any relationships with the S.S.A. Lower S.S.A. were found in the magnetic fractions of both coarse and fine clays in the untreated as well as DCB-treated samples. The average particle density of the magnetic fractions was found to be higher than the non-magnetic fractions, resulting in an underestimation of the S.S.A. This underestimation was further proven when clay-sized illmenite (density = 4.79 Mg m−3) was found to have lower S.S.A. than quartz (density = 2.65 Mg m−3) and well-crystallized Georgia kaolinite (density = 2.61 Mg m−3), even though the illmenite particles were smaller in size compared to the kaolinite particles and similar in size compared to the quartz particles. It is, therefore, proposed that the specific surface areas should be expressed either on a volumetric basis or corrected for differences in density to avoid underestimations when heavy minerals are present in the samples.
Area-weighted thickness distributions of fundamental illite particles for samples of illite and illite-smectite from seven locations (including bentonites and hydrothermally altered pyroclastics) were measured by Pt-shadowing technique, by transmission electron microscopy. Most thickness distributions are described by lognormal distributions, which suggest a unique crystallization process. The shapes of lognormal distributions of fundamental illite particles can be calculated from the distribution mean because the shape parameters α and β2 are interrelated: β2= 0.107α − 0.03. This growth process was simulated by the mathematical Law of Proportionate Effect that generates lognormal distributions. Simulations indicated that illite particles grow from 2-nm thick illite nuclei by surface-controlled growth, i.e., the rate of growth is restricted by how rapid crystallization proceeds given a near infinite supply of reactants, and not by the rate of supply of reactants to the crystal surface. Initially formed, 2-nm thick crystals may nucleate and grow within smectite interlayers from material produced by dissolution of single smectite 2:1 layers, thereby transforming the clay from randomly interstratified (Reichweite, R = 0) to ordered (R = 1) illite-smectite after the smectite single layers dissolve. In this initial period of illite nucleation and growth, during which expandable layers range from 100 to 20%, illite crystals grow parallel to [001]* direction, and the dimensions of the (001) plane are confined to the size of the original smectite 2:1 layers. After nucleation ceases, illite crystals may continue to grow by surface-controlled growth, and the expandable-layer content ranges from 20 to 0%. This latter period of illitization is characterized by three-dimensional growth. Other crystal-growth mechanisms, such as Ostwald ripening, supply-controlled growth, and the coalescence of smectite layers, do not produce the observed evolution of α and β2and the observed shapes of crystal thickness distributions.
Swelling clays may play a major role in the underground disposal of high-level nuclear waste (HLW) in deep geological formations. A multibarrier concept including a waste container, a steel overpack, an engineered barrier consisting of compacted clay (buffer) and the host rock is a potential technique for such HLW disposal. It is anticipated that H2 will be the main gas generated, mainly by anaerobic metal corrosion during disposal lifetime. After complete resaturation, the clay barrier will have a very low permeability and H2 may accumulate in the space between the overpack and the clay barrier. This could result in pressures exceeding the resistance of the clay and damage to the entire engineered barrier system (EBS).
The French Atomic Energy Commission (CEA) has performed an experimental program on H2 gas migration in a French clay referenced Fo-Ca. The tests were conducted with a specific odometer-type cell developed by the Power Reactor and Nuclear Fuel Corporation (PNC) in Japan. Permeability tests on compacted Fo-Ca clay samples of specific dry densities between 1.6 and 1.9 and for water saturation degrees between 70 and 100% provided significant H2 permeability data (ranging from 10−15 to 10−21 m2). Gas migration experiments were also performed to study the behavior of Fo-Ca clay under high gas pressure. Two kinds of gas transport threshold pressures were detected in unsaturated compacted clay. The first one, called “critical pressure”, is the pressure over which a gas outflow migrates into the clay. This pressure probably exceeds the capillary pressure of the largest pores within the clay. The second one, called “breakthrough pressure”, is detected with increasing gas injection pressure. A sudden rise of gas outflow is subsequently observed. The occurrence of the gas breakthrough is associated with the aperture and propagation of preferential gas transport pathways in the clay. This is apparently linked to the hydromechanical properties and stress state of the clay. When clay samples are not fully watersaturated, the critical pressure is always lower than the breakthrough pressure. However, when the clay is saturated, the 2 pressures appear to be very close. Finally, this study showed that breakthrough pressure—a key parameter for the long-term stability of the clay buffer—varies considerably with the gas injection increments and with the size of the sample. The results of these experiments are consistent with those reported previously by other investigators.
Polytype diversity of hydrotalcite-like minerals is mainly a function of the nature of the interlayer anion. Among the varieties with CO32− anions, only two- and three-layer polylypes having the same structure as manasseite and hydrotalcite have been confirmed. Stichtite and reevesite, which have been previously identified as six-layer polytypes, are in fact three-layer polytypes.
Among SO42− varieties, one-layer and three-layer polytypes have been identified, but the one-layer types are only present in more hydrated minerals with larger interlayer spacings. The three-layer varieties are of three different polytypes, with both P- and O-types of interlayers. Both rhombohedral and hexagonal varieties exist. Interlayer type may change during hydration-dehydration or anion exchange. Thus, in contrast with the CO32−-bearing minerals, a complete description of the polytype of the SO42−-bearing minerals cannot be made by simply indicating the number of the brucite-like layers in the unit cell.
The two-layer unit cell seen in refined crystal structures of some minerals with SO42− interlayers is not due to a doubled periodicity of alternation of brucite-like layers but to periodicity of interlayer anions, or layer cations.
We report the first application of 39K solid-state NMR to the study of tecto- and phyllosilicates. Under high field (11.7 Tesla) and with the application of a spin-echo sequence, informative 39K spectra can be obtained for several compounds of interest to the geologist and the agronomist. Tectosilicates and phyllosilicates can be distinguished from the uncorrected frequency (δCG) of the observed NMR peak. A series of montmorillonites submitted to increasing numbers of wetting and drying cycles was studied in order to discriminate between mobile and “fixed” forms of K+: when the spectra are run on hydrated samples, two different signals are observed corresponding to K+ in different hydration states, and NMR data can be correlated with the amount of exchangeable K+ measured by ion exchange. Thus, it appears that NMR can provide useful information on K fixation complementary to classical chemical methods.
The effect of phosphate on the formation of Fe oxides from Fe(II) salts is important because phosphate is a ubiquitous anion in natural environments. For this reason, the products formed by oxidation of phosphate-containing Fe(II)SO4 solutions neutralized with bicarbonate were characterized. The rate of oxidation of Fe(II) increased with increasing P/Fe atomic ratio to 0.2 in the initial solution. Goethite (α-FeOOH) or lepidocrocite (γ-FeOOH) or both were produced and identified by powder X-ray diffraction (XRD). The ratio between lepidocrocite and goethite increased with increasing P/Fe. In the 5–8.5 pH range, the formation of goethite predominated at P/Fe < 0.005, but only lepidocrocite was detected by XRD for P/Fe > 0.02. Thus, phosphate favors lepidocrocite formation because lepidocrocite has (1) a layered structure (like its precursor green rust), and (2) a structure less dense than that of goethite, thereby requiring less complete removal of the green-rust interlayer phosphate to form. The lepidocrocite crystals were platy, with prominent {010} faces and the thickness of the plates decreased with increasing P/Fe from >25 nm for P/Fe < 0.005 to <5 nm for P/Fe > 0.1. The solubility of lepidocrocite in acid oxalate was nearly complete for P/Fe > 0.03. The lepidocrocite contained occluded phosphate, i.e., phosphate that could not be desorbed by alkali treatment. The decrease in the b unit-cell length with increasing P/Fe suggests that lepidocrocite may contain structural P.
Iron oxides in surface environments generally form at temperatures of 25 ± 10°C, but synthesis experiments are usually done at higher temperatures to increase the rate of crystallization. To more closely simulate natural environments, the transformation of 2-line ferrihydrite to hematite and goethite at 25°C in the presence of different Al concentrations and at pH values from 4 to 7 was studied in a long-term (16–20 y) experiment. Aluminum affects the hydrolysis and charging behavior of 2-line ferrihydrite and retards crystallization. Al also promotes the formation of hematite over goethite and leads to multidomainic discoidal and framboidal crystals instead of rhombohedral crystals. The strong hematite-promoting effect of Al appears to be the result of a lower solubility of the Al-containing ferrihydrite precursor relative to pure ferrihydrite. Hematite incorporates Al into its structure, as is shown by a decrease in the a and c-cell lengths and a decrease in magnetic hyperfine fields (Mössbauer spectroscopy). With hematite formed at low-temperature, these decreases were, however, smaller for the cell length and greater for the magnetic field than for hematite produced at higher temperatures. Both phenomena are removed by heating the hematite at 200°C. They are attributed to structural OH and/or structural defects. The relative content of Al in the structure is lower for hematite formed at 25°C than for hematites synthesized at higher temperatures (80 and 500°C). The maximum possible substitution of one sixth of the Fe positions was not achieved, similar to soil hematites. These results show that properties of widely distributed soil Al-containing hematites can reflect formation environment.
Products resulting from the reaction of toluene with Cu(II)-montmorillonite were analyzed using GC/MS, HPLC/MS, GPC, and FTIR methods. Numerous oligomers of toluene were observed, extending at least as high as the resolution limit (1500 g/mol) of the GPC column. The FTIR spectrum of the nonvolatile components of the extract was very similar to that of liquid toluene. GC/MS data on the volatile components revealed dimers, trimers, and a multitude of transmethylated products. Oligomerization proceeded via both ring-ring (i.e., polyphenyl) and ring-methyl linkages. The primary trans-methylated products were tert-butylbenzene and isopropylxylene, indicating a competition between ringand side-chain methylations. The side-chain substitutions cannot be explained in terms of the aromatic radical cation intermediate which typically forms in arene/clay reactions. A consideration of alkylbenzene reactions observed in various other media suggests that the present transmethylation reactions occur via a benzyl cation intermediate.
A theoretical model describing the interaction between crystalline swelling and cation exchange selectivity is proposed for expanding 2:1 phyllosilicates. The model is based on the assumption that changes in basal spacing of a clay are phase changes, and that each phase of a clay has a different selectivity constant for a particular cation exchange reaction. Energy barriers stabilize the various phases over a limited range of interlayer ionic composition. These energy barriers cause hysteresis in crystalline swelling, which in turn causes hysteresis in cation exchange. Results are presented for an experiment involving Ba-Mg exchange on a synthetic fiuoro-hectorite. The results demonstrate key aspects of the proposed model, including a correlation between measured selectivity coefficients and basal spacings (R2 = 0.85), an abrupt change in basal spacing that corresponds with an abrupt change in selectivity and corresponding hysteresis in crystalline swelling and cation exchange selectivity. The results also demonstrate increased selectivity for the preferred cation (Ba) at high solution mole fraction of the preferred cation. This trend is opposite of that observed for heterogeneous natural smectites but consistent with predictions of the model for a homogeneous smectite.
The association between clay silicates, and iron and aluminium oxides has a major influence on the chemical and physical properties of soils. In this work the interaction of a kaolin substrate with iron and aluminium oxides and/or hydroxides obtained by basification of solutions of the metal ions was compared to that of quartz. Both precipitates were obtained in the presence of the substrates.
The aluminium precipitates had higher crystallinity, and thus led to smaller increases in specific surface area than those of iron, and were more effective modifiers of the surface electrical properties of the kaolin-oxide mixtures. At concentrations as low as 0.43% Al (g/100 g of substrate) the point of zero charge (PZC) of the components with variable charge was measurable, while Fe required 2.23% and gave lower PZCs than those of corresponding concentrations of Al. In both cases the PZCs shifted to higher pH as metal concentration was increased, as did the flocculation interval of colloidal suspensions of kaolin, which were close to the PZCs (where these were evaluated).
The Al and Fe oxides precipitated on quartz had higher crystallinities. Both metals increased the specific surface area to a similar extent, with an almost linear relationship to metal concentration. Samples containing ca. 6.5% Fe or Al had similar or slightly higher PZCs than corresponding kaolin samples.
The results were interpreted by assuming, in the case of kaolin, the union of the metal precipitate with the basal faces of the substrate, so decreasing the negative charge at this surface; and in the case of quartz, the formation of a hydroxide coating that neutralizes the negative charge on the silica surface. The difference between the results obtained for each metal was attributed to the different morphologies of their oxide precipitates.
The composition and origin of vanadium-bearing clay minerals in the Jurassic (Morrison and Entrada Formations) sandstones of the Colorado Plateau are reassessed using microanalyses (microprobe and scanning electron microscope). The main V-clays are authigenic illite and chlorite of various petrologic habits: clay casts and matrix, pore lining, replacement of detrital grains. The chemical composition of the V-clays is similar in three different localities in the Morrison Formation separated by about 50 km, suggesting that the V-clays are the result of a large regional event. In both illite and chlorite, Al and V are inversely correlated, showing that V replaces Al in the octahedral position. The chlorite contains a complex mixture of divalent and trivalent cations that cannot fit within a sudoite structure. A classification of V-micas is proposed that employs V3+/sum of the octahedral cations vs. the sum of the interlayer charges. V-illite and roscoelite from the Colorado Plateau are characteristic of diagenetic/hydrothermal environments. For a given locality the composition of the V-clays does not vary with habit, showing that these minerals formed at thermodynamic equilibrium.
A new model is proposed to explain, within the framework of the theory of spiral growth of Frank, the formation on inhomogeneous mica polytypes. This model relates the interaction and cooperative growth of two components (spirals and/or crystals) to produce a new stacking sequence. Depending on the relative orientation between the two components, a mismatch of the interlayer positions occurs, which is compensated through either a growth defect or a crystallographic slip at the octahedral (O) sheet. Both these adjustments transform the Ml layer into the M2 layer. These two types of layers have the same chemical composition but differ in cation distribution in the O sheet. The coalescence and cooperative growth of crystals occurs in fluid-rich environments and is most frequent in druses and volcanic fumaroles. These environments favor the inhomogeneous polytypes, especially those with complex stacking sequenc¬es. In addition, the Ml → M2 transformation is most probable in micas with an oxybiotitic composition, where the removal of the OH dipole strengthens the interlayer bonding and the presence of high-charge cations destabilizes the O sheet. Three examples of inhomogeneous polytypes of titaniferous oxybiotite from Ruiz Peak (a volcanic environment where many inhomogeneous polytypes have been reported) are presented.
Experimental alteration of obsidian was performed in 0.001 to 0.5 N NaOH and KOH solutions at 150 and 200 °C for 1 to 30 d. The products were examined by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDX). Changes in chemical composition and pH value of solutions during the reactions were also measured. As the pH of reacting solutions was increased, smectite, phillipsite and rhodesite crystallized progressively in NaOH solutions, while smectite, merlinoite and sanidine grew successively in KOH solutions. In addition, a small amount of less-soluble, poorly ordered boehmite was present as products of all the experiments. Smectite mainly appeared at slightly high pH, Si/Al and Na/K conditions, whereas rhodesite should be produced in extremely high pH, Na/K and Si/Al conditions. Sanidine was also formed in conditions of very high pH and Si/Al and very low Na/K. In intermediate conditions of pH and Si/Al, crystallization of phillipsite was stimulated in solutions of Na/K > 10, while formation of merlinoite was favored in conditions of Na/K < 1.