To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Vermiculite crystals from Santa Olalla, Spain, were intercalated with tetramethylammonium (TMA) after Na saturation. The resulting TMA-vermiculite showed near perfect 3-dimensional stacking order with cell parameters of a = 5.353(1) Å, b = 9.273(2) Å, c = 13.616(6) Å, β = 97.68(3)°, and space group C2/m, which indicated a 1M polytype. Single crystal X-ray refinement (R = 0.073, wR = 0.082) located the central atom (N) of the TMA (occupancy at 0.418) and the C atom of 1 methyl group (occupancy at about 0.35). The TMA is offset from the center plane between 2 silicate layers by 1.52 Å, and the methyl group is keyed into the silicate ring of the adjacent silicate layer. This arrangement constrains the positions of the C atoms of the other methyl groups to an opposing plane parallel to the oxygen basal plane. Associated H2O is randomly located between the TMA pillars, and no scattering from these molecules was observed. The calculated height of the TMA molecule is shown to be 4.15 Å.
Steric and electrostatic arguments suggesting that adjacent TMA molecules must alternate apex directions (±c) allow for a description of the local TMA arrangement. This model involves the keying of TMA molecules laterally, thereby explaining why perfect 3-dimensional stacking occurs. The offset of TMA from the center of the interlayer region produces a cavity suitable as an adsorption site for small molecules, such as benzene, which is consistent with the higher than expected adsorption of these molecules in TMA-smectites of high layer charge. This offset also explains the easy expandability of TMA-clays, since only very weak interactions occur between TMA and 1 adjacent silicate layer, thereby allowing molecules to enter the interlayer.
Infrared (IR) spectroscopy, in combination with magnetic methods, was used to study the thermally induced transformation of synthetic lepidocrocite (γ-FeOOH) to maghemite (γ-Fe2O3). Magnetic analyses showed that the thermal conversion began at about 175°C with the formation of superparamagnetic maghemite clusters. The overall structural transformation to ferrimagnetic γ-Fe2O3 occurred at 200°C and was complete around 300°C. At higher temperatures, the maghemite converted into hematite (α-Fe2O3). Observation of the transformation from γ-FeOOH to γ-Fe2O3 using variable-temperature IR spectroscopy indicated that dehydroxilation on a molecular level was initiated between 145°C and 155°C. The lag time between the onset of the breaking of OH bonds and the release of H2O from lepidocrocite around 175°C can be explained by diffusive processes. Overall dehydroxilation and the subsequent breakdown of the lepidocrocite structure was complete below 219°C. The comparison of the magnetic and IR data provides evidence that the dehydroxilation may precede the structural conversion to maghemite.
Vermiculite from Santa Olalla, Spain, was intercalated with tetramethylphosphonium [P(CH3)4+ = TMP], using a TMP-bromide solution at 70°C for three weeks. The resulting TMP-exchanged vermiculite, which contained a small (<5% of a site) amount of residual interlayer Ca, showed near perfect three-dimensional stacking. Cell parameters are a = 5.3492(8) Å, b = 9.266(2) Å, c = 14.505(6) Å, β = 97.08(2)°, space group is C2/m, and polytype is lM. Single-crystal X-ray refinement (R = 0.052, wR = 0.061) located two crystallographically unique sites for the phosphorus atoms (TMP molecule). The phosphorus atoms are occupied partially [P1 = 0.146(6), P2 = 0.098(5)] and are offset from the central plane of the interlayer by 1.23 Å to form two P-rich planes in the interlayer. Electrostatic interactions between the P cations and basal oxygen atoms essentially balance the negative charge associated with Al for Si substitutions in the tetrahedral sites. In addition, the orientations of the TMP molecules are probably different owing to packing constraints. The H2O site is located in the center of the interlayer, at the center of the silicate ring, and ∼3.09 Å from the Ca, which is also located on the central plane of the interlayer. Other H2O molecules are present in the interlayer, but could not be located by the diffraction experiment because they are randomly positioned in the interlayer. The tetrahedral rotation angle, α, is affected by the intercalation of TMP relative to tetramethylammonium (TMA), thus indicating that 2:1 layers are not simply rigid substrates, and that dynamic interactions occur during reactions involving adsorption and exchange.
The objective of this work was to prepare series of reduced-charge materials from different parent Li-saturated dioctahedral smectites, to investigate the effects of temperature, chemical composition and charge location in smectites on the charge reduction and to characterize reduced-charge smectites (RCSs) using methylene blue (MB) adsorption. The layer charge decrease, induced by Li fixation, is correlated with the trends in the spectra of MB-RCS dispersions in the visible region (VIS) spectra. Distribution of the negative surface charge of the clay minerals controls the distance between the adsorbed MB cations and thus affects the formation of MB dimers and higher agglomerates. Because each form of MB (monomer, dimer, higher agglomerate, J-aggregates) absorbs light at a different wavelength, the VIS spectra of MB depend sensitively on the charge density at the clay surface. Both cation exchange capacity (CEC) values and spectra of MB-clay dispersions clearly detect extensive reduction of the layer-charge density in reduced-charge montmorillonites (RCMs) upon Li-thermal treatment. The extent of charge reduction depends on the temperature of the thermal treatment, as well as on the octahedral charge of the montmorillonite. Reduction of the layer charge proceeds to a much lesser extent for smectites with mainly tetrahedral charge and high Fe content (Fe-rich beidellite and ferruginous smectite). Both CEC data and MB spectra detect only a slight decrease of the layer charge density, which relates to the low octahedral charge of these minerals. Following heating at higher temperatures (120-160°C), slightly higher Li fixation is indicated by CEC values; however, no charge reduction is confirmed by MB spectra. Release of protons accompanying Li+ fixation in Fe-rich smectites heated at 180 or 200°C was detected in the spectra of MB-clay dispersions and confirmed by potentiometric titrations.
Transmission electron microscopy (TEM) observation shows narrow regions in a Ti-containing Mg-rich annite of composition (K0.90Na0.02)(Mg0.72Fe2+1.78Mn0.03Ti0.27Al0.05)(Si2.77Al1.23)O10(OH,F)2 from a granitic rock, where the ±60° and 180° stacking angles occur extensively. These regions are a few hundreds of nanometers thick along the [001]* direction and are within 1M or 2M1 annite. The stacking sequence in one of these regions was determined by two atomic-resolution images recorded along [1̄10] and [010] of the same crystal. Stacking sequences with ± 120° or 180° rotations are dominant, although those with ±60° rotations occur also. Locally 2O and more complex sequences exist. Compositional analysis by TEM indicated no difference in the chemical compositions between these regions and the adjacent ones with regular 1M or 2M1 stacking sequence. The origin of these unusual stacking sequences in annite is discussed.
A commercial bentonite (primarily smectite) from Fischer Scientific Company (F bentonite) and a natural bentonite from Peru (P bentonite) were used in the preparation of pillared clays with polyoxymetal cations of Al that were subsequently modified with Ce and La. Several Al/metal ratios (5 and 9) were used to investigate the effects on the thermal and hydrothermal stability of these synthetic clays. The structure of these materials was studied by X-ray diffraction. Isotherms were determined by N2 adsorption. Thermal stability was determined using thermogravimetric (TG) measurements and ara-monia-TPD (temperature programmed desorption) was used to obtain acidity data. These materials exhibited basal spacings from 16 to 20 Å, with surface areas from 239 to 347 m2g−1, with microporosity contributing from 50 to 80% of the total surface area. Pillared clays prepared from F bentonite generally showed larger basal spacings and surface areas than those prepared from P bentonite. Pillared clays modified with Ce or La did not show any apparent structural changes relative to the Al-pillared clays. Pillared clays modified with Ce and La had similar acid properties as Al-pillared clays. In contrast, the thermal and hydrothermal stabilities of these materials were greater than Al-pillared clays. However, Ce-pillared clay appears to be more effective than La-pillared clay in delaying the dehydroxylation of pillared clays with increasing temperature. The intercalation of Ce and La into Al-pillared clays improved the thermal stability, which may increase the utility of these materials as catalysts.
Five montmorillonites, one hectorite, and two vermiculites were treated with OH-Al solutions containing rapid- and slow-reacting polymers of similar concentrations. With all smectites, both rapid- and slow-reacting OH-Al polymers were much more preferentially adsorbed than monomeric species. Relatively slow-reacting OH-Al polymers were more preferentially adsorbed than rapid-reacting ones. The average basicity of the adsorbed Al was 2.46, which was close to that of the OH-Al polymers in the original solution. The OH-Al polymers that enter the interlayer resemble those in original solutions.
With vermiculites, the solution concentration of rapid-reacting OH-Al polymers was much reduced after reaction. The average basicity of the adsorbed Al was 1.99, which was considerably lower than that in the original solution. It is postulated that OH-Al polymers break to monomeric Al ions and then enter the clay. The monomeric Al species that enter the clay interlayers hydrolyze and polymerize in situ and become fixed. The H+ ions released from hydrolysis convert the rapid-reacting OH-Al polymers to monomeric Al in solution. Limited amounts of slow-reacting polymers were adsorbed because of their resistance to acid depolymerization.
The interaction of H+- and Cu2+-ions with Ca-montmorillonite was investigated in 0.1 mol/dm3 solutions of Ca(CIO4)2 at 298.2 K by Potentiometrie titrations using both glass electrodes (for H+) and ion specific electrodes (for Cu2+ ). The experimental data were interpreted on the basis of the surface complexation model. The calculations were performed with the least-squares program FITEQL (Westall, 1982) using the constant capacitance approximation. The best fit was obtained with a set of equilibria of the general form
and the constants log β1,0(int)S = 8.16 (± 0.04), log β-1,0(int)S = −8.71 (± 0.08), log β0,1(int)S = 5.87 (± 0.06), log β−1,1(int)S = −0.57 (± 0.12), log β−2,1(int)S = −6.76 (± 0.02). An appropriate modeling of the H+ adsorption data requires the introduction of a second surface group ≡ TOH with the acidity constant
In addition, the ion exchange equilibria Ca2+ − Cu2+ and Ca2+ − H+ had to be taken into account. Arguments are presented to identify the groups ≡ SOH and ≡ TOH as surface aluminol groups =Al(OH)(H2O) and surface silanol groups ≡ Si-OH, respectively.
Hydroxyaluminosilicate (HAS) and hydroxyaluminum (HyA) ionic solutions having final Al concentrations ranging from 3.74 to 4.00 mM; NaOH/Al molar ratios of 1.0, 2.0 and 2.5; and Si/Al molar ratios of 0.00, 0.27–0.30, 0.51–0.56 and 0.95–1.01 were prepared through the interaction of AlCl3, or-thosilicic acid and NaOH solutions. When these solutions reacted with <2 µm sized vermiculite (Vt) and montmorillonite (Mt), varying amounts of Al and Si were fixed on Vt and Mt clays. Potassium fixation and exchange capacities of HyA/HAS (OH/Al = 1.0, 2.0 and 2.5)-Vt and HyA/HAS (OH/AI = 2.0)-Mt complexes were compared with those of untreated Vt and Mt at added K levels ranging from 21 to 319 cmolc kg−1. The untreated Vt clay showed K fixation as high as 94 cmolc kg−1, in contrast to only 16 cmolc kg−1 exchangeable K. The untreated Mt fixed a maximum of 9 cmolc K kg−1 out of a total K adsorption capacity of 67 creole kg−1. In the HyA/HAS-Vt complexes, K fixation reduced drastically in comparison to untreated Vt, and ranged from 9 to 24 cmolc kg−1 out of their total K adsorption capacities of 61 to 81 cmolc kg−1. In the HyA/HAS-Mt complexes, too, the amount of K fixed reduced to a great extent in comparison to Mt and ranged from 1.48 to 1.84 cmolc kg−1. Potassium became more exchangeable due to the presence of hydroxy-interlayers in the clays. The reduction in CEC and the well-known propping effects of hydroxy-cations’ islands in the interlayers might have hindered K fixation by the complexes. The relationships of maximum K fixing capacities of the HyA/HAS-Vt complexes with the amounts of Al, Si and Al + Si fixed on Vt were all exponential and negative. However, the amount of Al + Si or only Al fixed on Vt appeared to be the best indicator of K fixation capacities of hydroxyinterlayered Vt clay.
A process for treating smectite-bearing rock samples that utilizes LR White resin; allows TEM observation of expanded smectite interlayers and therefore preservation of original rock textures. Examples of several lattice fringe images are shown, including: (1) Dioctahedral smectite layers from a shale (1388.9 meter depth, Texas Gulf Coast) give fringes that consistently have spacings of 1.2–1.3 nm, yet duplicate other features previously observed in collapsed samples. (2) Packets of illite layers give fringes with 1.0-nm spacings coexisting with packets of (dominantly) R1 I/S having 2.1-nm lattice fringe spacings in a Gulf Coast shale from 4742.1 m. (3) Rectorite from Garland Co., Arkansas gives 2.3-nm lattice fringes. Samples with wide ranges of I/S ratios and lithologies have been found to be permanently expanded with retention of original textures, commonly leading to unambiguous identification of illite and smectite interlayers in lattice fringe images.
—The charge of the expandable interlayers in a series of fourteen diagenetic illite/smectites (I/S) from lower Paleozoic K-bentonites was determined by the alkylammonium ion exchange method. The magnitude (<0.50 equivalents per half formula unit) and characteristic heterogeneous distribution of interlayer charges in eight samples with expandabilities from 70% to about 15% confirm the smectitic character of the expandable interlayers in this range. This result coupled with the lack of a correlation between expandability and interlayer charge is consistent with the hypothesis of a layer-by-layer transformation from a precursor smectite to highly illitic I/S clays during K-bentonite diagenesis. The charge of the expandable interlayers in I/S samples with about 10% or less expandabilities have been inferred to be vermiculitic rather than smectitic. The K-fixed interlayers and expandable interlayers in these samples appear to be similar in charge. The significantly higher charges inferred for the highly illitic samples can be consistent both with a layer-by-layer transformation and the neoformation mechanisms proposed in the literature for the formation of illite.
Fine kaolinite suspensions were mixed with unaged or aged FeCl3 in this experiment. The interaction between clay particles and Fe3+ hydrolysis products was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The proportion of Fe adsorbed was measured and the electrical charge on the clay particles was determined by electrophoresis. The effect of this interaction on flocculation of clay suspensions was investigated in a series of sedimentation tests. The Fe3+ ions acted as counterions when their concentration was low and when unaged FeCl3 solution was used. Otherwise, their hydrolysis complexes acted as a bonding agent between kaolinite particles. The dispersion-flocculation behavior of kaolinite suspensions was found to be in agreement with the theory of Derjaguin, Landau, Verwey and Overbeek (DLVO), as the sedimentation behavior could be predicted from the data of zeta potentials (ζ).
During processing of Athabasca oil sands, the finely divided solids form an aqueous suspension, which ultimately stabilizes as a gel-like structure retaining up to 90% of the process water. This gelling phenomenon is believed to be caused by colloidal inorganic components. Kaolinite and mica are the main crystalline minerals in these colloidal solids; swelling clays are present in only trace amounts. Non-crystalline components are more concentrated in the finer fraction of the solids. Although the surfaces of the colloidal solids are virtually free of Fe, some contamination with polar organic matter is observed.
Two clay fractions of a Cambrian claystone from Estonia, consisting essentially of illite and 20% expandable illite-smectite, (I-S) were treated with C12 and C18 alkylammonium cations for K-exchange. Both the untreated and treated samples were dated by the K-Ar method. The treated clays lost several percent of their original K2O, with greater losses for longer-chain cations and for longer reaction time, in accordance with previously published studies. The dates of the treated clay fractions were 20–30 Ma lower than those of the untreated clays. The decrease in the dates suggests preferential opening of older, detrital clays. The K-Ar dates of the illite layers susceptible to K extraction by the various treatments were calculated by subtracting K2O and radiogenic 40Ar values of the consecutive step products, and they were plotted against the total % K2O removed, used as an indicator of the reaction progress. Extrapolation of the plot revealed a detrital (1550 Ma) and a diagenetic (380 Ma) age for the 2 illitic minerals present in the investigated shale sample. The inferred Devonian age of diagenesis of the Estonian clay corresponds to the period of massive dolomitization in the area. Both alteration processes can be related to a Devonian incursion of hot or alkaline fluids, which helps to explain the occurrence of 20% expandable I-S in claystones that have never been buried more than 1000 m.
Extrapolated K-Ar ages and K2O contents of the illitic minerals, estimated from the X-ray diffraction (XRD) data, were used to model the experimental data. A good agreement was reached when dilution effects (chlorite and expanded illite) were taken into account.
The maximum crystal radius Rn of ice in hollow wet chrysotile tubes is established by thermoporometry to be between 2.8 and 3.2 nm, and the internal pore volume Vn of the tubes to be between 0.008 and 0.02 ml/g. The hollow tubes of chrysotile and, for comparative reasons, small plates of talc, are hydrothermally synthesized at temperatures between 563 and 600 K and at pressures between 75 and 120 hPa. Size and shape of the pores can be varied by changing the Mg/Si molar ratios in steps of 3/1.5 and 3/2 for chrysotile and 3/3.6 and 3/4 for talc. The tubular morphology of the aggregates dried at 393 K is investigated by 1) transmission electron microscopy (TEM), 2) nitrogen adsorption and desorption at 77 K, and 3) diffuse reflectance infrared fourier transformed spectroscopy (DRIFTS). The radius within the hollow tubes, Ri, is between 2.5 and 4.0 nm as measured by TEM, and between 2.8 and 3.2 nm as determined by nitrogen adsorption and desorption. The measured radii agree well with the value calculated from crystallographic data, which is smaller than 5.3 nm. Within the dried aggregates the tubes are clustered in regular patterns, in which each tube is surrounded by six other tubes. The external radius, Ro, between the clustered tubes is from 1.6 to 2.9 nm as observed by TEM, and from 1.8 to 2.3 nm by N2 adsorption and desorption. The external radius is not measured by thermoporometry. Where thermoporometry only measures the average pore size and pore volume within the tubes, TEM and N2 adsorption and desorption additionally provide the corresponding values between the tubes. A third pore radius, 5 to 20 nm between the clusters of chrysotile tubes, is established with N2 adsorption and desorption.
Investigation of a naturally occurring mixture of dioctahedral micas prompted an examination of X-ray diffraction (XRD) techniques for obtaining quantitative estimates of 1M and 2M1 mica proportions. A method for determining quantitative estimates has been developed that includes the effect of preferred orientation of mica particles as described by the March function. A diagram is presented from which the percentage of 2Mı and the March parameter (r) can be obtained from two peak-area ratios: 2.80 Å/5.0 Å and 2.80 Å/2.58 Å, which are measured on observed XRD patterns of mica mixtures. The ability of this peak-area ratio diagram to predict reasonably accurate proportions of 1M and 2Mı micas was tested by comparing calculated and observed XRD patterns over a range of 2θ values from 16° to 40° for size-fractionated mixtures. Lack of accurate crystal-structure data for dioctahedral 1M mica proved an impediment to obtaining improved quantitative estimates of mica proportions.