To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The ability to remove K rapidly with a solution containing sodium tetraphenylborate (NaTPB) from the interlayers of naturally-occurring phlogopite using a microwave-assisted technique has been examined. Samples were equilibrated with a 1.0 N sodium chloride (NaCl) – 0.2 N NaTPB – 0.01 M disodium ethylenediaminetetraacetic acid (EDTA) solution at 60, 80 and 100°C under both conventional and microwave-assisted heating methods and for periods of time ranging from 1 to 3 h. The samples also underwent treatments of either continuous time periods or for successive treatments of 1 h with a washing step between each treatment.
Following sample treatment, the expansion of the c-axis value (d001) from 10.0 to 12.2 Å indicated the presence of hydrated Na ions in the phlogopite structure. Under most treatment conditions the 10.0 Å peak remained even after treatment due to incomplete K removal. Chemical analysis and X-ray diffraction (XRD) revealed that samples heated using microwave radiation exchanged their interlayer K for Na much more rapidly than under conventional heating for all treatment times and temperatures. The successive treatments also degraded the mica more rapidly than the continuous treatments. The greatest amount of K (95%) was removed when the mica was treated three times for 1 h at 60°C. The results suggest that successive treatments of phlogopite mica heated under microwave radiation will rapidly remove K from the mica. Decreasing the amount of time required to prepare K-depleted phlogopite micas will make these materials more appealing as ion exchangers for separation of Cs from nuclear wastes.
The effects of temperature on the swelling properties of smectites are important for a variety of different geological conditions, but studies on this topic have been rather limited. The purpose of this study was to investigate the swelling behavior of Na- and Ca-montmorillonite at various temperatures greater than room temperature, up to 150°C, using in situ X-ray diffraction (XRD) analysis. A sample chamber was designed, the temperature and humidity of which were controlled precisely, for environmental in situ measurements. The XRD measurements were performed at small relative humidity (RH) intervals for precise observation of the swelling behavior.
The swelling behavior of Na-montmorillonite showed distinct zero-, one-, and two-layer hydration states. The basal spacings of Na-montmorillonite changed continuously with RH for various temperatures in the transition region between the zero- and one-layer hydration states, and the swelling curves of the transition region moved to greater degrees of RH with increasing temperature. The basal spacings jumped from the one- to two-layer hydration states for all temperatures at almost the same RH.
The basal spacings of Ca-montmorillonite changed continuously from the zero- to the two-layer hydration states at all temperatures. This behavior is remarkably different from that of Na-montmorillonite. At low-RH conditions, the d001 value of Ca-montmorillonite decreased with increasing temperature. The swelling curves of Ca-montmorillonite did not show a plateau at any temperature for the one-layer hydration state. The swelling curves of Ca-montmorillonite moved to greater RH with temperature, similar to the transformation region between the zero- and one-layer hydration states in Na-montmorillonite. These differences between Na- and Ca-montmorillonite are related to the hydration powers of exchangeable cations.
Molecular dynamics (MD) simulations provide an accurate description of the mineral–fluid interface from the perspective of the atomistic level taking into account all atom interactions. This simulation approach is computationally expensive if applied to large molecular systems. Classical Fluid Density Functional Theory (f-DFT) delivers structural and thermodynamic information at comparatively small computational costs. Numerous applications of f-DFT for electrolytes neglect an explicit consideration of solvent. In this work, an unrestricted three-component model (3CM) of f-DFT was applied, which incorporates Lennard-Jones (LJ) attractions for the description of the short-range interactions of fluid–fluid and fluid–wall rather than the hard sphere repulsions, named DFT/LJ-3CM. The DFT/LJ-3CM model considers ions as charged LJ particles and treats solvent molecules as neutral LJ particles. To validate the performance of the DFT/LJ-3CM, the f-DFT calculations were compared with atomistic simulations for montmorillonite (Mnt) with various hydrated states in electrolyte solutions. This benchmarking was used to assess critically the advantages and limitations of the f-DFT model. The calibrated DFT/LJ-3CM model for Na and Ca Mnt was applied to calculate cation selectivity for the ion exchange equilibrium with effective ion radius and swelling behavior of Mnt. The predictions of the DFT/LJ-3CM model were found to be in good agreement with the atomistic simulations and experimental data under a wide range of conditions. At the same time, the DFT calculations were 3–4 orders of magnitude faster than conventional MD simulations. Thus, the DFT/LJ-3CM model can be a computationally effective alternative to atomistic simulation in providing structural and thermodynamic properties of fluid–clay mineral interfaces. The DFT/LJ-3CM model provides a robust approach, which can be used for upscaling in reactive transport simulators and modeling ion migration taking place under more complex thermo-chemo-hydro-mechanical conditions.
The aims of this study were to obtain accurate structural information on the dimethyl sulfoxide (DMSO) and dimethylselenoxide (DMSeO) kaolinite intercalates, paying close attention to the hydrogen-bond geometries, and to provide a detailed interpretation of the individual vibrational modes of intercalates under study and relate their energies to the formation of the hydrogen bonds. Accurate positions of all the atoms in the structures of kaolinite:dimethylsulfoxide (K:DMSO) and kaolinite:dimethylselenoxide (K:DMSeO) intercalates have been obtained by the total energy minimization in solid state at density functional theory (DFT) level of the theory. The bond distances and angles in the kaolinite 1:1 layer are in good agreement with those reported in the most recent single-crystal refinement of kaolinite. Computed geometries of DMSO and DMSeO agree well with the high-quality diffraction data and independent theoretical ab initio calculations. The organic molecules are fixed in the interlayer space mainly by three moderately strong O-H⋯O hydrogen bonds, of different strengths, with the O⋯O contact distances being within 2.739–2.932 Å (K:DMSO) and 2.681–2.849 Å (K:DMSeO). Substantially weaker C-H⋯O and O-H⋯S(Se) contacts play only a supporting role. The optimized atomic coordinates were used to calculate the individual vibrational modes between 0 and 4000 cm−1. The maximum red shifts of the OH-stretching modes caused by the formation of the O-H⋯O hydrogen bonds were 407 cm−1 (K-DMSO) and 537 cm−1 (K-DMeSO), respectively. The Al-O-H bending modes are spread over the large interval of 100–1200 cm−1, but the dominant contributions are concentrated between 800 and 1200 cm−1. Theoretically calculated energies of the OH- and CH-stretching modes show good agreement with the previously published figures obtained from the infrared and Raman spectra of these intercalates.
Twenty two samples were studied to investigate the nature and evolution mechanism of mixed-layer kaolinite-smectite (K-S). We examined the <2 µm or <0.2 µm fraction of K-S formed by hydrothermal and hypergenic alteration of volcanic material. The samples are from three localities: 20 specimens from a Tortonian clay deposit in Almería, Spain; one specimen from weathered Eocene volcanic ash from the Yucatan Peninsula, Mexico; and one sample from a weathered Jurassic bentonite from Northamptonshire, England. The samples were studied using chemical analysis, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The XRD patterns of the oriented, glycolated mounts were modeled using NEWMOD and the proportion of smectite and kaolinite layers was determined, ranging between 0 and 80% kaolinite. The analysis of the OH-stretching region of the FTIR spectra at different temperatures (180–550°C) showed the progressive dehydroxylation of kaolinite domains and, perhaps, of smectite domains, but no detailed information could be obtained about the sequential OH loss in different cation environments. The abundance and short-range ordering of the octahedral cations were studied using the OH-bending bands. The chemical and FTIR-estimated octahedral cation abundances were broadly similar. Aluminum showed a tendency to mix with Fe and Mg rather than to form AlAl pairs. Al-for-Mg substitution accompanying kaolinization was evident from the increase in AlAl pairs and decrease in AlMg pairs. Iron is retained in the structure. No other octahedral cation rearrangement was observed. The intensity of the 750 cm−1 band, assigned to translational vibrations of external OH groups in a kaolinitic environment, was quantified and modeled in relation to kaolinite layer proportion. The chemical data show that there are residual interlayer cations in kaolinite domains, which, in accordance with the model mentioned above, disturb external OH-translation vibrations. These results indicate the persistence of certain chemical and structural smectite features in kaolinite domains and thus support a smectite kaolinization process via a solid-state transformation. This confirms previous XRD, thermal, chemical and NMR analyses of the same sample set.
The performance of bentonite barriers for high level radioactive waste (HLRW) disposal is currently being tested in various real-and up-scale disposal tests. One of the disposal tests, the ABM test (ABM = alternative buffer material), was conducted by SKB (Svensk Kärnbränslehantering) as a mediumscale experiment at the Äspö hard rock laboratory in Sweden. The present study deals with the second parcel (ABM-II), which was retrieved after 6.5 years with 2.5 years of water saturation and 3–4 years of heating up to 141°C. Nine different bentonites and two marine clays were tested to investigate the performance. The aim of the study was to provide a detailed characterization of the mineralogical and chemical changes that took place in ABM-II, compare the findings with ABM-I (the first of the six test parcels), and try to draw some general conclusions concerning the use of bentonites in such geotechnical barriers. The ABM-II test parcel revealed a set of reactions that a HLRW bentonite might undergo. The most prominent reaction was the rather complete exchange of cations, which was discussed in a second part to this publication (II — cation exchange; Dohrmann and Kaufhold, 2017). The corrosion of the Fe in metal canisters was observed, but no discrete corrosion product was identified. At the interface of bentonite and the metal canister, the formation of smectite-type trioctahedral clay minerals was observed. In contrast to the ABM-I test, anhydrite was present in many of the bentonite blocks of the ABM-II test. In most concepts used for HLRW disposal in crystalline rocks, a temperature below 100°C at the canister surface was applied to avoid boiling. In the ABM-II test, boiling of water was possibly observed. Throughout the experiment, a pressure/water loss was recorded in the upper part of the geotechnical barrier and water was added to maintain pressure in the bentonite. As a result of evaporation, NaCl crusts might have formed and the barrier was partly disintegrated. These results demonstrated that a reasonable assumption is that no boiling of water occurs in disposal concepts in which a pressure loss can occur.
Dioctahedral vermiculite commonly occurs in soils and fresh sediments, but has not been reported in sedimentary rocks. Little is known of the evolution of this mineral during diagenesis. According to the available literature, dioctahedral vermiculite is likely to exhibit strong potential for selective sorption and fixation of K+ involving interlayer dehydration and collapse. he objective of the present study was to investigate the influence of K+ saturation and seawater treatments on the structure o dioctahedral vermiculite. Due to the fact that no dioctahedral vermiculite standard reference material was available, a natural sample of soil clay containing dioctahedral vermiculite was used in the study. The clay was saturated with K+ using different protocols simulating natural processes taking place in soils and marine environments. The solid products of the experiments were analyzed for potassium content using flame photometry. The effect of the treatments used on the structure of dioctahedral vermiculite was studied using X-ray diffraction (XRD). The percentages of the collapsed interlayers were estimated by modeling the XRD patterns based on a whole-pattern multi-specimen modeling technique. All the treatments involving K+ saturation caused K+ fixation and irreversible collapse (i.e. contraction to 10 Å) of at least a portion of the hydrated (vermiculitic) interlayers. Air drying of the K+-saturated samples greatly enhanced the degree of the collapse. The results obtained gave no clear answer as to whether time had had a significant effect on the degree to which irreversible collapse occurred. Selective sorption of K+ from artificial seawater was observed. These results clearly indicate that collapse of dioctahedral vermiculite is likely to occur in soils during weathering and in sediments during early diagenesis. Both processes need to be taken into consideration in sedimentary basin studies.
Hydrotalcite-like layered double hydroxides (LDHs) containing different ratios of Ni2+, Cu2+, Mg2+ and Al3+ in the layers have been prepared by a new method, the key features of which are a very rapid mixing and nucleation process in a colloid mill followed by a separate ageing process. The compositions and structural parameters of the materials synthesized using the two routes are very similar, although the degree of crystallinity is slightly higher for the LDHs produced using the new method. The major advantage of the new method is that it produces smaller crystallites, having a very narrow range of distribution of crystallite size. In the conventional coprecipitation process at constant pH, the mixing process takes a considerable time during which nuclei formed at the beginning of the process have a much longer time to undergo crystal growth than those formed at the end of the process. The consequence is that a wide dispersion of crystallite sizes is obtained. In the colloid mill process, however, the mixing and nucleation is complete in a very short time and is followed by a separate ageing process.
The zeolites and coexisting minerals of the silicic vitric tuffs in the Alaçatı (Çeşme) area, west of İzmir (Turkey), were studied. Mordenite is the most abundant zeolite in tuffs of the Alaçatı area and usually coexists with clinoptilolite-heulandite, smectite and calcite. Opal-CT was identified by means of its crystal morphology and EDX spectrum. Scanning electron microscopy (SEM) revealed the relative age relationships between the zeolites and coexisting minerals, namely mordenite, clinoptilolite-heulandite, smectite, calcite, and, in addition, opal-CT. Smectite consistently crystallized earlier than any of the zeolites, and it occasionally coats the outer walls of some of the vitric material. The zeolites are commonly located on the smectite, although some mordenites were observed to be in direct contact with glass shards that lacked a smectite coating. Clinoptilolite-heulandite formed after smectite and before mordenite. Opal-CT is seen to postdate both smectite and needle-shaped mordenite. Calcite was probably the latest mineral to crystallize in the Alaçatı tuffs. The zeolites in the tuffs of the Alaçatı area formed by dissolution of silicic vitric tuffs by Na- and Ca-rich thermal waters which passed through the fracture zone. The appearance of zeolites together with smectite along this zone may be attributed to a semi-open system which subdivided into smaller closed systems. Small changes in the pH and chemical composition of the thermal waters during alteration produced the corrosion effects observed by SEM. Small amounts of clinoptilolite-heulandite were corroded prior to crystallization of coexisting mordenite. The different compositions of the thermal waters were probably inherited from water that resulted from mixing of thermal and groundwaters.
Fluoride is an essential component in the mineralization of bones and in the formation of dental enamel. Excessive intake may result, however, in teeth mottling and dental and skeletal fluorosis. With an average fluoride concentration of ~2.4 mg L−1 in Tunisian drinking water, the present study focused on promoting low-cost materials for removal of excess fluoride. Two Tunisian raw clays were used as adsorbents in a batch process to eliminate excess fluoride ions from drinking water and, thus, avoid fluorosis phenomena. Physicochemical characterization and chemical analysis of the raw clays were carried out using X-ray fluorescence, X-ray diffraction, and the BET method. For fluoride removal, the effects of contact time, adsorbent dose, and pH were evaluated. The optimum defluoridation capacity was at 30 min of contact time, 20 g/L of clay dose, and at pH = 3. The kaolinite tested removed more fluoride than smectite. The selected clay was used successfully to remove fluoride from contaminated water with high concentrations of foreign ions that exceeded the potability limits. Adsorption isotherms revealed that the data fitted well to both the Langmuir and Freundlich adsorption isotherms, thus confirming both monolayer and multilayer adsorption.
Clay minerals are abundant in soils and sediments and often contain Fe. Some varieties, such as nontronites, contain as much as 40 wt.% Fe2O3 within their molecular structure. Several studies have shown that various Fe-reducing micro-organisms can use ferric iron in Fe-bearing clay minerals as their terminal electron acceptor, thereby reducing it to ferrous iron. Laboratory experiments have also demonstrated that chemically or bacterially reduced clays can promote the reductive degradation of various organics, including chlorinated pesticides and nitroaromatics. Therefore, Fe-bearing clays may play a crucial role in the natural attenuation of various redox-sensitive contaminants in soils and sediments. Although the organochlorinated pesticide p,p′-DDT is one of the most abundant and recalcitrant sources of contamination in many parts of the world, the impact of reduced Fe-bearing clays on its degradation has never been documented. The purpose of the present study was to evaluate the extent of degradation of p,p′-DDT during the bacterial reduction of Fe(III) in an Fe-rich clay. Microcosm experiments were conducted under anaerobic conditions using nontronite (sample NAu-2) spiked with p,p′-DDT and the metal-reducing bacteria Shewanella oneidensis MR-1. Similar experiments were conducted using a sand sample to better ascertain the true impact of the clay vs. the bacteria on the degradation of DDT. Samples were analyzed for DDT and degradation products after 0, 3, and 6 weeks of incubation at 30°C. Results revealed a progressive decrease in p,p′-DDT and increase in p,p′-DDD concentrations in the clay experiments compared to sand and abiotic controls, indicating that Fe-bearing clays may substantially contribute toward the reductive degradation of DDT in soils and sediments. These new findings further demonstrate the impact that clay materials can have on the natural attenuation of pollutants in natural and artificial systems and open new avenues for the passive treatment of contaminated land.
In this article, I propose a new reading for both law and narrative in the Aramaic Levi Document (ALD). In the first section, I show that the passage of “the law of the priesthood” pertains to the daily morning service in the Temple. In the second section, I suggest that the narrative that contains these instructions, in which Isaac speaks to Levi at Abraham’s home, exegetically connects the laws to the story of Isaac, whose father offered him up on an altar, and reflects a priestly theology that views the priest himself as an offering.
The author to the Hebrews makes the seemingly strange choice to introduce two quotations from the LXX with indefinite markers (Heb 2.6; 4.4). While some commentators do not consider these introductions, others have argued that they function either rhetorically to engage the audience or theologically to highlight the divine speaker. This article argues that a hermeneutical function better explains the author's choices: the author uses the indefiniteness to guide his audience in how to interpret each quoted passage. The author uses the indefinite marker of place (που) to remove both Gen 2.2 and Ps 8.5–7 LXX from their salvation-historical context; this results in the rest of God (Heb 3–4) and the role of humanity within creation (Heb 2) applying equally to the present and the coming ages. He pairs this with the indefinite marker of person (τις) in his introduction to Ps 8 to indicate that the audience should not interpret it prosopologically as the speech of the Son to the Father; rather the Psalm testifies to the role of humanity within the present and the coming worlds, a role which the Son incarnate fulfils. This hermeneutical explanation aligns with other instances of indefinite citation markers in Second Temple Judaism, most notably in Philo. This argument, therefore, both adds depth to the characterisation of the author as a careful reader of Scripture and brings out the intended meaning and function of Ps 8 and Gen 2 in the discourse of Hebrews more clearly.
Repentance is central to the message of Christianity. Yet, repentance has received little analysis in recent scholarship despite being emphasized by the church fathers. In particular, there has been minimal effort to understand the necessity of repentance in light of Christ’s atoning work. With this as the background, I explore fundamental questions such as repentance’s definition, scope, and role in salvation history. Furthermore, I attempt to more precisely outline repentance’s role in Christ’s salvific work. Underpinning the project is my view that repentance should be understood as metanoia or transformation. This transformation of repentance is ordered toward divine metanoia – participation in Christ. In developing repentance, I put forward a synthesis of Thomas Aquinas’s framework of penance and John McLeod Campbell’s account of Christ’s vicarious repentance. Through this synthesis, I attempt to make sense of the relationship between repentance and atonement. I finish by suggesting that it would be appropriate to conclude that Thomas would endorse a vicarious repentance account of the atonement and hint at how it might fit into broader soteriologies.
The provenance of clays in shaley intervals across the Permian-Triassic boundary (PTB) in the Xiakou section was investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM), and the results suggest that the layers have three different provenances. The layer P267-b has a loose texture with an oriented arrangement of detrital clay particles, consisting mainly of illite and minor chlorite with irregular outlines or ragged edges. The dehydroxylation reaction of the clays in this layer is characterized by an intense overlapping endothermic effect at ∼600°C, produced by mixed-layer illite-smectite (I-S) consisting of a mixture of cis-vacant (cv)and trans-vacant (tv) octahedral sheets derived from weathering of detrital illite. Layer P259-b shows a more condensed texture with a dark color, and is composed mainly of I-S and minor illite and chlorite. Evidence for alteration of detrital materials to clay mineral aggregates was observed under SEM. Similar to layer P267-b, an intense dehydroxylation reaction occurs at ∼600°C, indicating clays consisting of a mixture of tv and cv sheets and, therefore, that the sediments were derived from a mixture of terrigenous and volcanic sources, combining the texture and the clay-mineral composition of those sediments. However, the undisturbed lamination and relatively small grain size in this bed indicate a low-energy depositional environment. The clay-mineral compositions of the other layers are mainly of I-S with minor amounts of illite and chlorite. Their endothermic dehydroxylation reaction, however, occurs mainly at ∼660°C, indicating that cv sheets are dominant in the clays, and thus, are derived from smectites of volcanic origin. Observations by SEM show that clay minerals grow at the expense of detrital materials, confirming the diagenetic alteration of volcanic ashes in marine sediments. Illite and chlorite are the detrital clay minerals in the clay layers across the PTB in the Xiakou section. The presence of detrital illite and chlorite in the sediments means that an arid climate prevailed in the region during the end-Permian and early Triassic period.
Particle–particle interactions in natural clays can be evaluated by their rheological behavior, but the results are often affected by the physicochemical properties of the clays. The behaviors of two fundamentally different types of clays (low-activity and high-activity) differ with respect to salinity and a time factor (duration of shearing at a given shear rate): illite-rich Jonquiere clay (low-activity clay, Canada) and montmorillonite-rich Wyoming bentonite (high-activity clay, USA). The purpose of the present study was to investigate these different behaviors. Most natural clays exhibit shear-thinning and thixotropic behavior with respect to salinity and the volumetric concentration of the solids. Natural clays also exhibit time-dependent non-Newtonian behavior. In terms of index value and shear strength, lowactivity and high-activity clays are known to exhibit contrasting responses to salinity. The geotechnical and rheological characteristics as a function of salinity and the shearing time for the given materials are compared here. The clay minerals were compared to estimate the inherent shear strengths, such as remolded shear strength (which is similar to the yield strength). Low-activity clay exhibits thixotropic behavior in a time-dependent manner. High-activity clay is also thixotropic for a short period of shearing, although rare cases of rheopectic behavior have been measured for long periods of shearing at high shear rates. The change from thixotropic to rheopectic behavior by bentonite clay has little effect at low shearing speeds, but appears to have a significant effect at higher speeds.
The results of a combined chemico-osmotic/diffusion experiment conducted on a geosynthetic clay liner (GCL) containing Na-bentonite illustrate the destructive role of diffusion on the ability of the GCL to act as a semipermeable membrane. The experiment is conducted by maintaining a concentration difference of 5 mM CaCl2 across the GCL specimen while preventing the flow of solution through the specimen. A time-dependent membrane efficiency is derived from measured pressure differences induced across the specimen in response to the applied concentration difference. The diffusive mass fluxes of the solutes (Cl− and Ca2+) through the specimen are also measured simultaneously. An initial increase in induced pressure difference across the specimen to a peak value of 19.3 kPa is observed, followed by a gradual decrease to zero. The decrease in induced pressure difference is consistent with compression of diffuse double layers between clay particles and particle clusters due to diffusion of Ca2+, resulting in a concomitant increase in pore sizes and decrease in the observed membrane behavior. The time required for effective destruction of the initially observed semipermeable membrane behavior correlates well with the time required to achieve steady-state Ca2+ diffusion. The results have important implications for the ability of clays to sustain membrane behavior.