To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Drip irrigation and mulching were tested to minimize unproductive water loss through evaporation and weed interference. A field experiment was conducted during spring season of 2020 and 2021 in split plot design with three replications. The study includes six treatment combinations of drip irrigation methods (surface drip and subsurface drip irrigation) and mulching (black plastic, paddy straw and no mulch) along with one conventional furrow irrigation without mulching (as control) in main plots. Four weed control treatments (atrazine 1000 g a.i./ha as pre-emergence, two hand weedings at 30 and 60 days after sowing [DAS], weed free and weedy for whole crop growth period) were kept in the subplots. The combination of drip irrigation and mulches significantly enhanced leaf area index and crop biomass at 60 DAS than furrow irrigation. Integration of subsurface drip irrigation with plastic mulching resulted in the lowest weed density and biomass among main plots. Drip irrigation coupled with plastic and straw mulching resulted in 86 and 50% reduction in weed density and biomass, respectively, as compared to no mulching. Integration of subsurface drip with paddy straw mulch and black plastic mulch resulted in 17.1 and 15.5% higher maize grain yield, respectively, as compared to furrow irrigation. The highest irrigation water productivity (3.58 kg/m3) was observed in combination of subsurface drip and paddy straw mulch followed by combination of subsurface drip and black plastic mulch (3.51 kg/m3). Overall, straw mulching in drip irrigation system proved economical in terms of maize productivity.
Victorian assumptions about care infrastructure differed profoundly from our own. Accustomed to local care communities, Victorian writers like Charles Dickens and Samuel Richard Bosanquet resisted the advent of standardized, centralized, institutional care for the poor and sick. While they acknowledged the need for widespread help, they fought to provide care through personal charity based on intimate knowledge, not governmental edict. Comparing their care infrastructure with ours can help remind us of the risks of institutional indifference and the value of care relations.
People are often assumed to expand existing mechanisms—kinship in particular—to include others when they form communities. These models (con)fuse similarity with sameness, as we argue based on Husserl's concept of empathy. People recognize others without overlooking differences. They form community by negotiating belonging. We ask how individuals materialize community, how they create unity in a political process, and how they employ bordering and bonding social interactions. Our case study is Dos Ceibas, a Late Preclassic (350 b.c. to a.d. 250) Maya hamlet in the Petexbatun region. The North Plaza originated as a residential group—possibly of the hamlet's founder—and was transformed over multiple construction episodes into a public and ceremonial place. By a.d. 250, Dos Ceibas consisted of a small pyramid overlooking a plaza and two likely residential buildings. Its growth pattern sets the North Plaza apart from nearby Group MP16 and magnified internal differences. At the same time, Dos Ceibas's pyramid and plaza were likely communal constructions that project a shared community identity. The comparison with contemporary settlements nearby identifies distinct settlement layouts and suggests localized community identities.
Synthetic controls (SCs) are widely used to estimate the causal effect of a treatment. However, they do not account for the different speeds at which units respond to changes. Reactions may be inelastic or “sticky” and thus slower due to varying regulatory, institutional, or political environments. We show that these different reaction speeds can lead to biased estimates of causal effects. We therefore introduce a dynamic SC approach that accommodates varying speeds in time series, resulting in improved SC estimates. We apply our method to re-estimate the effects of terrorism on income (Abadie and Gardeazabal [2003, American Economic Review 93, 113–132]), tobacco laws on consumption (Abadie, Diamond, and Hainmueller [2010, Journal of the American Statistical Association 105, 493–505]), and German reunification on GDP (Abadie, Diamond, and Hainmueller [2015, American Journal of Political Science 59, 495–510]). We also assess the method’s performance using Monte Carlo simulations. We find that it reduces errors in the estimates of true treatment effects by up to 70% compared to traditional SCs, improving our ability to make robust inferences. An open-source R package, dsc, is made available for easy implementation.
Despite crowdfunding platforms’ growing involvement in financing welfare, related ethical issues have received little scholarly attention. To address this gap, we focus on GoFundMe, the leading welfare crowdfunding platform in the US, to examine whether it facilitates the establishment of a just society that democratizes access to funding. Informed by Rawls’s ethics, we conduct a comprehensive analysis, arguing that GoFundMe’s modus operandi merits criticism. We advance three interrelated arguments for why GoFundMe is morally problematic. First, it distributes information and primary goods unfairly, perpetuating inequalities that disadvantage the most vulnerable. Second, it uses narratives that may distract public attention from systemic flaws in welfare provision, potentially reducing social pressure for institutional reform. Third, its emphasis on individual choice and responsibility may contribute to momentum for neoliberal policymaking. We show why scholars, policymakers, and platforms should engage in debate about regulating welfare crowdfunding activities to improve their ethicality.
We investigate the dynamics of heavy inertial particles in a flow field due to an isolated, non-axisymmetric vortex. For our study, we consider a canonical elliptical vortex – the Kirchhoff vortex and its strained variant, the Kida vortex. Contrary to the anticipated centrifugal dispersion of inertial particles, which is typical in open vortical flows, we observe the clustering of particles around co-rotating attractors near the Kirchhoff vortex due to its non-axisymmetric nature. We analyse the inertia-modified stability characteristics of the fixed points, highlighting how some of the fixed points migrate in physical space, collide and then annihilate with increasing particle inertia. The introduction of external straining, the Kida vortex being an example, introduces chaotic tracer transport. Using a Melnikov analysis, we show that particle inertia and external straining can compete, where chaotic transport can be suppressed beyond a critical value of particle inertia.
As wind farms continue to grow in size, mesoscale effects such as blockage and gravity waves become increasingly important. Allaerts & Meyers (J. Fluid Mech., vol. 862, 2019, pp. 990–1028) proposed an atmospheric perturbation model (APM) that can simulate the interaction of wind farms and the atmospheric boundary layer while keeping computational costs low. The model resolves the mesoscale flow, and couples to a wake model to estimate the turbine inflow velocities at the microscale. This study presents a new way of coupling the mesoscale APM to a wake model, based on matching the velocity between the models throughout the farm. This method performs well, but requires good estimates of the turbine-level velocity fields by the wake model. Additionally, we investigate the mesoscale effects of a large wind farm, and find that aside from the turbine forces and increased turbulence levels, the dispersive stresses due to subgrid flow heterogeneity also play an important role at the entrance of the farm, and contribute to the global blockage effect. By using the wake model coupling, we can explicitly incorporate these stresses in the model. The resulting APM is validated using 27 prior large-eddy simulations of a large wind farm under different atmospheric conditions. The APM and large-eddy simulation results are compared on both mesoscale and turbine scale, and on turbine power output. The APM captures the overall effects that gravity waves have on wind farm power production, and significantly outperforms standard wake models.
This paper examines the dependence structure and risk spillovers between oil prices and exchange rates in both oil-exporting and oil-importing countries. Using a flexible dependence switching copula model, we analyze both positive and negative dependence and transitions between the dependence regimes. Additionally, we investigate the directional risk spillovers between oil and currency markets in both their downsides and upsides. Based on empirical data from 1999 to 2024 for major oil-exporting and oil-importing countries, we find that oil price-currency dependence is predominantly positive for oil-exporting countries, with infrequent transitions, but mainly negative for oil-importing countries, with frequent transitions between the two dependence regimes. These transitions often occur around crisis or war times. Furthermore, we observe that during downturns in the oil market, tail dependence between oil prices and currencies becomes more pronounced than during upturns. Our results indicate the presence of risk spillovers between oil and currency markets, with the downside spillover effects outweighing the upside ones. Moreover, we find that risk spillover is stronger from oil markets to currency markets than the reverse direction. These insights substantially enrich the existing literature and would offer valuable implications for effective risk management strategies and policymaking.
As part of the effort to secure the release of the Dorchester Labourers, a group of agricultural workers sentenced in 1834 to penal transportation, London theaters hosted four fundraising evenings for the prisoners and their families. A turning point in the popular stage, these evenings marked a moment when commercial venues became willing to ally with working-class protest movements. At three of the four events, the theaters mounted nautical melodramas. Using Judith Butler's theories of the political possibilities of mourning, this article argues that melodrama effectively explored the twinned crises of social austerity and political repression while imagining radical transformation emerging from loss.
In this article I issue a challenge to what I call the Independence Thesis of Theory Assessment (ITTA). According to ITTA, the evidence for (or against) a theory must be assessed independently from the theory explaining the evidence. I argue that ITTA is undermined by cases of evidential uncertainty, in which scientists have been guided by the explanatory power of their theories in the assessment of the evidence. Instead, I argue, these cases speak in favor of a model of theory assessment in which explanatory power may indeed contribute to the stabilization of the evidential basis.
This study intends to provide a comprehensive review of the basic concepts, types, applications, and experimental studies of frequency selective rasorber (FSR) presented in the literature. Analyzing the characteristics of FSR became crucial for future adaptability when taking into consideration of immense development in RADAR, military, stealth, and electromagnetic interference applications. The rasorber was initially conceived as a radome for antennas and it was developed expeditiously in recent years. This survey is focused on evaluating the unit cell design (2D, 2.5D, and 3D), equivalent circuit model, polarization characteristics, fractional bandwidth, insertion loss, absorptivity, bandwidth enhancement for absorption, transmission, and their applications based on the FSR. Various techniques like exploiting lumped elements, magnetic materials, lumped components, dual/triple layer structures, varactor diodes, PIN diodes, and distributed elements (slots and stubs) are used to improve the novelty and performance of the FSR that are discussed in the works of literature. At last, these techniques, bandwidth, structures, and performances are compared based on their relative positions to feature the benefits and limitations.
The paper analyzes family-level wealth inequality and social mobility in Dudelange (Luxembourg) over five generations between 1766 and 1872, a period that saw the end of feudal social relations. While the integration of Luxembourg into the French revolutionary regime produced a reduction in the Gini coefficient for the ownership of land, the social mobility analysis reveals a relative stability of family positions within the land-wealth distribution throughout the period. This shows that family-level transmission mechanisms limit social mobility and strongly advantage those with ancestors owning property wealth, even when there are significant changes in the organization of property relations.
This paper presents an eight wire-driven parallel robot (WDPR-8) designed to serve as a suspension manipulator for aircraft models during wind tunnel testing. The precision of these tests is significantly influenced by the system’s stability and workspace, both of which are shaped by the geometric configuration of the structure and the tension in the wires. To acquire the efficiency principle of the suspension scheme design for the model, a kinematics model for a WDPR-8 was established. Based on the kinematics model, the stiffness of a WDPR-8 was theoretically studied, and the analytical expression of stiffness matrix of a WDPR was deduced. The stiffness matrix was composed of two terms, one of which is determined by the configuration of suspension system and the other term is determined by the wire tension. Based on the analysis result, a set of suspension scheme was discussed under the calculation of stiffness matrix and workspace analysis. In the discussion process, in addition to the stiffness-maximum calculation, another criterion as force closure is presented, which is useful for increasing the stiffness and workspace of the robot. Finally, a prototype was established according to the analysis result, and the workspace experiments are conducted. Test results indicate that the workspace meets the design requirements, validating the system suspension design method of a WDPR for aircraft model suspension in wind tunnel test considering of the systematic stiffness and workspace.