We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
On several key issues we agree with the commentators. Perhaps most importantly, everyone seems to agree that psychology has an important role to play in building better models of human vision, and (most) everyone agrees (including us) that deep neural networks (DNNs) will play an important role in modelling human vision going forward. But there are also disagreements about what models are for, how DNN–human correspondences should be evaluated, the value of alternative modelling approaches, and impact of marketing hype in the literature. In our view, these latter issues are contributing to many unjustified claims regarding DNN–human correspondences in vision and other domains of cognition. We explore all these issues in this response.
Deep neural networks (DNNs) have had extraordinary successes in classifying photographic images of objects and are often described as the best models of biological vision. This conclusion is largely based on three sets of findings: (1) DNNs are more accurate than any other model in classifying images taken from various datasets, (2) DNNs do the best job in predicting the pattern of human errors in classifying objects taken from various behavioral datasets, and (3) DNNs do the best job in predicting brain signals in response to images taken from various brain datasets (e.g., single cell responses or fMRI data). However, these behavioral and brain datasets do not test hypotheses regarding what features are contributing to good predictions and we show that the predictions may be mediated by DNNs that share little overlap with biological vision. More problematically, we show that DNNs account for almost no results from psychological research. This contradicts the common claim that DNNs are good, let alone the best, models of human object recognition. We argue that theorists interested in developing biologically plausible models of human vision need to direct their attention to explaining psychological findings. More generally, theorists need to build models that explain the results of experiments that manipulate independent variables designed to test hypotheses rather than compete on making the best predictions. We conclude by briefly summarizing various promising modeling approaches that focus on psychological data.
Hot carrier based methods constitute a valuable approach for efficient and silicon compatible sub-bandgap photodetection. Although, hot electron excitation and transfer have been studied extensively on traditional materials such as Au and Ti, reports on alternative materials such as titanium nitride (TiN) are rare. Here, we perform hot hole photodetection measurements on a p-Si/metal thin film junction using Ti, Au and TiN. This material is of interest as it constitutes a refractory alternative to Au which is an important property for plasmonic applications where high field intensities can occur. In contrast to Au, a TiN/Si junction does not suffer from metal diffusion into the Si, which eases the integration with current Si-fabrication techniques. This work shows that a backside illuminated p-Si/TiN system can be used for efficient hot hole extraction in the IR, allowing for a responsivity of 1 mA/W at an excitation wavelength of 1250 nm and at zero bias. Via a comparison between TiN and other commonly used materials such as Au, the origin of this comparably high photoresponse can be traced back to be directly linked to a thin TiO2-x interfacial layer allowing for a distinct hot-hole transfer mechanism. Moreover, the fabrication of TiN nanodisk arrays is demonstrated which bears great promise to further boost the device efficiency.
A detailed understanding of the response of mineral phases to the radiation fields experienced in a geological disposal facility (GDF) is currently poorly constrained. Prolongued ion irradiation has the potential to affect both the physical integrity and oxidation state of materialsand therefore may alter a structure's ability to react with radionuclides. Radiohalos (spheres of radiation damage in minerals surrounding radioactive (α-emitting) inclusions) provide useful analogues for studying long term α-particle damage accumulation. In this study, silicateminerals adjacent to Th- and U-rich monazite and zircon were probed for redox changes and long/short range disorder using microfocus X-ray absorption spectroscopy (XAS) and high resolution X-ray diffraction (XRD) at Beamline I18, Diamond Light Source. Fe3+ → Fe2+reduction has been demonstrated in an amphibole sample containing structural OH– groups – a trend not observed in anhydrous phases such as garnet. Coincident with the findings of Pattrick et al. (2013), the radiolytic breakdown of OH– groups is postulatedto liberate Fe3+ reducing electrons. Across all samples, high point defect densities and minor lattice aberrations are apparent adjacent to the radioactive inclusion, demonstrated by micro-XRD.
When a rigid body collides with a liquid surface with sufficient velocity, it creates a splash curtain above the surface and entrains air behind the sphere, creating a cavity below the surface. While cavity dynamics has been studied for over a century, this work focuses on the water entry characteristics of deformable elastomeric spheres, which has not been studied. Upon free surface impact, an elastomeric sphere deforms significantly, giving rise to large-scale material oscillations within the sphere resulting in unique nested cavities. We study these phenomena experimentally with high-speed imaging and image processing techniques. The water entry behaviour of deformable spheres differs from rigid spheres because of the pronounced deformation caused at impact as well as the subsequent material vibration. Our results show that this deformation and vibration can be predicted from material properties and impact conditions. Additionally, by accounting for the sphere deformation in an effective diameter term, we recover previously reported characteristics for time to cavity pinch off and hydrodynamic force coefficients for rigid spheres. Our results also show that velocity change over the first oscillation period scales with the dimensionless ratio of material shear modulus to impact hydrodynamic pressure. Therefore, we are able to describe the water entry characteristics of deformable spheres in terms of material properties and impact conditions.
Within acute psychiatric inpatient services, patients exhibiting severely disturbed behaviour can be transferred to a psychiatric intensive care unit (PICU) and/or secluded in order to manage the risks posed to the patient and others. However, whether specific patient groups are more likely to be subjected to these coercive measures is unclear. Using robust methodological and statistical techniques, we aimed to determine the demographic, clinical and behavioural predictors of both PICU and seclusion.
Methods.
Data were extracted from an anonymised database comprising the electronic medical records of patients within a large South London mental health trust. Two cohorts were derived, (1) a PICU cohort comprising all patients transferred from general adult acute wards to a non-forensic PICU ward between April 2008 and April 2013 (N = 986) and a randomly selected group of patients admitted to general adult wards within this period who were not transferred to PICU (N = 994), and (2) a seclusion cohort comprising all seclusion episodes occurring in non-forensic PICU wards within the study period (N = 990) and a randomly selected group of patients treated in these wards who were not secluded (N = 1032). Demographic and clinical factors (age, sex, ethnicity, diagnosis, admission status and time since admission) and behavioural precursors (potentially relevant behaviours occurring in the 3 days preceding PICU transfer/seclusion or random sample date) were extracted from electronic medical records. Mixed effects, multivariable logistic regression analyses were performed with all variables included as predictors.
Results.
PICU cases were significantly more likely to be younger in age, have a diagnosis of bipolar disorder and to be held on a formal section compared with patients who were not transferred to PICU; female sex and longer time since admission were associated with lower odds of transfer. With regard to behavioural precursors, the strongest predictors of PICU transfer were incidents of physical aggression towards others or objects and absconding or attempts to abscond. Secluded patients were also more likely to be younger and legally detained relative to non-secluded patients; however, female sex increased the odds of seclusion. Likelihood of seclusion also decreased with time since admission. Seclusion was significantly associated with a range of behavioural precursors with the strongest associations observed for incidents involving restraint or shouting.
Conclusions.
Whilst recent behaviour is an important determinant, patient age, sex, admission status and time since admission also contribute to risk of PICU transfer and seclusion. Alternative, less coercive strategies must meet the needs of patients with these characteristics.
As the rate of terrorism increases, it is important for health care providers to become familiar with the management of injuries inflicted by blasts and explosions. This article reviews the ocular injuries associated with explosive blasts, providing basic concepts with which to approach the blast-injured patient with eye trauma. We conducted a literature review of relevant articles indexed in PubMed between 1948 and 2007. Two hundred forty-four articles were reviewed. We concluded that ocular injury is a frequent cause of morbidity in blast victims, occurring in up to 28% of blast survivors. Secondary blast injuries, resulting from flying fragments and debris, cause the majority of eye injuries among blast victims. The most common blast eye injuries include corneal abrasions and foreign bodies, eyelid lacerations, open globe injuries, and intraocular foreign bodies. Injuries to the periorbital area can be a source of significant morbidity, and ocular blast injuries have the potential to result in severe vision loss.
(Disaster Med Public Health Preparedness. 2010;4:154-160)
III Zw 2 shows dramatic radio outbursts roughly every five years. Here we present the light curves and VLBA observations of the latest flare with an excellent time sampling. We have detected superluminal motion with a lower limit for the apparent expansion speed of 1.25±0.09 c at 43 GHz. Spectral and spatial evolution are closely linked and the evolution of III Zw 2 in a turnover frequency vs. linear size diagram is similar to the correlation for GPS and CSS sources. Before and after this rapid expansion we observe a period of virtually no expansion. However, at 15 GHz III Zw 2 shows a constant slow expansion (∼0.6 c). The difference is qualitatively explained by optical depth effects in an ‘inflating-balloon model’, describing the evolution of radio lobes on an ultra-compact scale. The stop-and-go behaviour could be explained by a jet interacting with a molecular cloud or the molecular torus.
Frederick Orpen Bower (1855–1948) was a renowned botanist best known for his research on the origins and evolution of ferns. Appointed Regius Professor of Botany at the University of Glasgow in 1885, he became a leading figure in the development of modern botany and the emerging field of paleobotany, devising the interpolation theory of the life cycle in land plants. First published between 1923 and 1928 as part of the Cambridge Botanical Handbook series, The Ferns was the first systematic classification of ferns according to anatomical, morphological and developmental features. In this three-volume work Bower analyses the major areas of comparison between different species, describes primitive and fossil ferns and compares these species to present-day fern species, providing a comprehensive description of the order. Volume 3 describes, analyses and classifies extant species of ferns.
Frederick Orpen Bower (1855–1948) was a renowned botanist best known for his research on the origins and evolution of ferns. Appointed Regius Professor of Botany at the University of Glasgow in 1885, he became a leading figure in the development of modern botany and the emerging field of paleobotany, devising the interpolation theory of the life cycle in land plants. First published between 1923 and 1928 as part of the Cambridge Botanical Handbook series, The Ferns was the first systematic classification of ferns according to anatomical, morphological and developmental features. In this three-volume work Bower analyses the major areas of comparison between different species, describes primitive and fossil ferns and compares these species to present-day fern species, providing a comprehensive description of the order. Volume 1 describes and analyses the features of ferns which Bower uses in his system of classification.
Recent evidence points to partially shared genetics of neuropsychiatric disorders.
Aims
We examined risk of intellectual disability and other neuropsychiatric outcomes in 3174 children of mothers with schizophrenia, bipolar disorder or unipolar major depression compared with 3129 children of unaffected mothers.
Method
We used record linkage across Western Australian population-based registers. The contribution of obstetric factors to risk of intellectual disability was assessed.
Results
Children were at significantly increased risk of intellectual disability with odds ratios (ORs) of 3.2 (95% CI 1.8–5.7), 3.1 (95% CI 1.9–4.9) and 2.9 (95% CI 1.8–4.7) in the maternal schizophrenia, bipolar disorder and unipolar depression groups respectively. Multivariate analysis suggests familial and obstetric factors may contribute independently to the risk. Although summated labour/delivery complications (OR = 1.4, 95% CI 1.0–2.0) just failed to reach significance, neonatal encephalopathy (OR = 7.7, 95% CI 3.0–20.2) and fetal distress (OR = 1.8, 95% CI 1.1–2.7) were independent significant predictors. Rates of rare syndromes in children of mothers with mental disorder were well above population rates. Risk of pervasive developmental disorders, including autism, was significantly elevated for children of mothers with bipolar disorder. Risk of epilepsy was doubled for children of mothers with unipolar depression.
Conclusions
Our findings provide epidemiological support for clustering of neuropsychiatric disorders. Further larger epidemiological studies are warranted.
Frederick Orpen Bower (1855–1948) was a renowned botanist best known for his research on the origins and evolution of ferns. Appointed Regius Professor of Botany at the University of Glasgow in 1885, he became a leading figure in the development of modern botany and the emerging field of paleobotany, devising the interpolation theory of the life cycle in land plants. First published between 1923 and 1928 as part of the Cambridge Botanical Handbook series, The Ferns was the first systematic classification of ferns according to anatomical, morphological and developmental features. In this three-volume work Bower analyses the major areas of comparison between different species, describes primitive and fossil ferns and compares these species to present-day fern species, providing a comprehensive description of the order. Volume 2 describes, analyses and classifies primitive and fossil ferns.
Experiments demonstrate the ~77× amplification of 0.5 to 3.5-ps pulses of seed light by interaction with Langmuir waves in a low density (1.2 × 1019 cm−3) plasma produced by a 1-ns, 230-J, 1054-nm pump beam with 1.2 × 1014 W/cm2 intensity. The waves are strongly damped (kλD = 0.38, Te = 244 eV) and grow over a ~ 1 mm length, similar to what is experienced by scattered light when it interacts with crossing beams as it exits an ignition target. The amplification reduces when the seed intensity increases above ~1 × 1011 W/cm2, indicating that saturation of the plasma waves on the electron kinetic time scale (<0.5 ps) limits the scatter to ~1% of the available pump energy. The observations are in agreement with 2D PIC simulations in this case.
Of all possible black hole sources, the event horizon of the Galactic Center black hole, Sgr A*, subtends the largest angular scale on the sky. It is therefore a prime candidate to study and image plasma processes in strong gravity and it even allows imaging of the shadow cast by the event horizon. Recent mm-wave VLBI and radio timing observations as well as numerical GRMHD simulations now have provided several breakthroughs that put Sgr A* back into the focus. Firstly, VLBI observations have now measured the intrinsic size of Sgr A* at multiple frequencies, where the highest frequency measurements have approached the scale of the black hole shadow. Moreover, measurements of the radio variability show a clear time lag between 22 GHz and 43 GHz. The combination of size and timing measurements, allows one to actually measure the flow speed and direction of magnetized plasma at some tens of Schwarzschild radii. This data strongly support a moderately relativistic outflow, consistent with an accelerating jet model. This is compared to recent GRMHD simulation that show the presence of a moderately relativistic outflow coupled to an accretion flow Sgr A*. Further VLBI and timing observations coupled to simulations have the potential to map out the velocity profile from 5-40 Schwarzschild radii and to provide a first glimpse at the appearance of a jet-disk system near the event horizon. Future submm-VLBI experiments would even be able to directly image those processes in strong gravity and directly confirm the presence of an event horizon.
This book describes the theory and practice of infrared and Raman spectroscopy as applied to the study of the physical and chemical characteristics of polymers. Its purpose is to give the beginning researcher in the field a firm foundation and a starting point for the study of more-advanced literature. To this end the book concentrates on the fundamentals of the theory and nomenclature, and on the discussion of well-documented illustrations of these fundamental principles, including many now-classic studies in the subject. No previous knowledge of either polymers or vibrational spectroscopy is assumed. The book will be of value to anyone beginning research on the vibrational spectroscopy of polymers, either from a physics or a chemistry background. It is intended to be especially suitable for use in undergraduate courses in physics, chemistry or materials science at both universities and polytechnics.
A brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20% efficiency and >1W/cm2 power density at a hot side temperature of 300–650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using heterostructure barriers is used to increase the thermoelectric power factor. In order to study electron transport above the barriers and lateral momentum conservation in thermionic emission process, the current-voltage characteristic of ballistic transistor structures is investigated. Embedded ErAs nanoparticles and metal/semiconductor multilayers are used to reduce the lattice thermal conductivity. Cross-plane thermoelectric properties and the effective ZT of the thin film are analyzed using the transient Harman technique. Integrated circuit fabrication techniques are used to transfer the n- and p-type thin films on AlN substrates and make power generation modules with hundreds of thin film elements. For vacuum devices, nitrogen-doped diamond and carbon nanotubes are studied for emitters. Sb-doped highly oriented diamond and low electron affinity AlGaN are investigated for collectors. Work functions below 1.6eV and vacuum thermionic power generation at temperatures below 700C have been demonstrated.
We present preliminary results from a wide-field spectroscopic survey of two galaxy clusters at $z=0.4$, separated by $\lt$10 $h^{-1}$ Mpc on the sky. Both clusters are similarly optically rich, have velocity dispersions $\sim 700$ km s$^{-1}$, but differ in X-ray luminosity by a factor of $\sim$20.To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html