Cattle (Bos spp.) grazing on weed–mixed forage biomass may potentially spread weed seeds, leading to plant invasions across pasturelands. Understanding the possibility and intensity of this spread is crucial for developing effective weed control methods in grazed areas. This research undertook an in vitro experiment to evaluate the germination and survival of five dominant weed species in the southern United States [Palmer amaranth (Amaranthus palmeri S. Watson), yellow foxtail [Setaria pumila (Poir.) Roem. & Schult.], johnsongrass [Sorghum halepense (L.) Pers.], field bindweed (Convolvulus arvensis L.) and pitted morningglory (Ipomoea lacunosa L.)] upon incubation in rumen fluid for eight time periods (0, 4, 8, 12, 24, 24, 48, 72, and 96 h). For the 96-h treatment, a full Tilley and Terry procedure was applied after 48 h for stopping fermentation, followed by incubation for another 48 h simulating abomasum digestion. Seed germination, upon incubation, varied significantly among weed species, with I. lacunosa reaching zero germination after only 24 h of incubation, whereas A. palmeri and S. halepense retained up to 3% germination even after 96 h of incubation. The hard seed coats of A. palmeri and S. halepense likely made them highly resistant, whereas the I. lacunosa seed coat became easily permeable and ruptured under rumen fluid incubation. This suggests that cattle grazing can selectively affect seed distribution and invasiveness of weeds in grazed grasslands and rangelands, including the designated invasive and noxious weed species. As grazing is a significant component in animal husbandry, a major economic sector in the U.S. South, our research provides important insights into the potential role of grazing as a dispersal mechanism for some of the troublesome arable weeds in the United States. The results offer opportunities for devising customized feeding and grazing practices combined with timely removal of weeds in grazeable lands at the pre-flowering stage for effective containment of weeds.