We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce ‘generalised higher-rank k-graphs’ as a class of categories equipped with a notion of size. They extend not only higher-rank k-graphs, but also the Levi categories introduced by the first author as a categorical setting for graphs of groups. We prove that examples of generalised higher-rank k-graphs can be constructed using Zappa–Szép products of groupoids and higher-rank graphs.
Harmonic map theory is used to show that a convex cocompact surface group action on a $\text{CAT}(-1)$ metric space fixes a convex copy of the hyperbolic plane (i.e. the action is Fuchsian) if and only if the Hausdorff dimension of the limit set of the action is equal to 1. This provides another proof of a result of Bonk and Kleiner. More generally, we show that the limit set of every convex cocompact surface group action on a $\text{CAT}(-1)$ space has Hausdorff dimension $\geq 1$, where the inequality is strict unless the action is Fuchsian.
By means of a quaternion algebra over $\mathbb{F}$q(t), we construct an infinite series of torsion free, simply transitive, irreducible lattices in PGL2($\mathbb{F}$q((t))) × PGL2($\mathbb{F}$q((t))). The lattices depend on an odd prime power q = pr and a parameter τ ∈ $\mathbb{F}$q×, τ ≠ 1, and are the fundamental group of a square complex with just one vertex and universal covering Tq+1 × Tq+1, a product of trees with constant valency q + 1.
Our lattices give rise via non-archimedian uniformization to smooth projective surfaces of general type over $\mathbb{F}$q((t)) with ample canonical class, Chern numbers c12 = 2 c2, trivial Albanese variety and non-reduced Picard scheme. For q = 3, the Zariski–Euler characteristic attains its minimal value χ = 1: the surface is a non-classical fake quadric.
We prove that every incidence graph of a finite projective plane allows a partitioning into incident point-line pairs. This is used to determine the order of the identity in the K0-group of so-called polygonal algebras associated with cocompact group actions on Ã2-buildings with three orbits. These C*-algebras are classified by the K0-group and the class of the identity in K0. To be more precise, we show that 2(q − 1) = 0, where q is the order of the links of the building. Furthermore, if q = 22l−1 with l ∈ ℤ, then the order of is q − 1.
We construct and classify all groups given by triangular presentations associated to the smallest thick generalized quadrangle that act simply transitively on the vertices of hyperbolic triangular buildings of the smallest non-trivial thickness. Our classification yields 23 non-isomorphic torsion-free groups (which were obtained in an earlier work) and 168 non-isomorphic torsion groups acting on one of two possible buildings with the smallest thick generalized quadrangle as the link of each vertex. In analogy with the case, we find both torsion and torsion-free groups acting on the same building.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.