We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background:Candida auris is an emerging multidrug-resistant yeast that is transmitted in healthcare facilities and is associated with substantial morbidity and mortality. Environmental contamination is suspected to play an important role in transmission but additional information is needed to inform environmental cleaning recommendations to prevent spread. Methods: We conducted a multiregional (Chicago, IL; Irvine, CA) prospective study of environmental contamination associated with C. auris colonization of patients and residents of 4 long-term care facilities and 1 acute-care hospital. Participants were identified by screening or clinical cultures. Samples were collected from participants’ body sites (eg, nares, axillae, inguinal creases, palms and fingertips, and perianal skin) and their environment before room cleaning. Daily room cleaning and disinfection by facility environmental service workers was followed by targeted cleaning of high-touch surfaces by research staff using hydrogen peroxide wipes (see EPA-approved product for C. auris, List P). Samples were collected immediately after cleaning from high-touch surfaces and repeated at 4-hour intervals up to 12 hours. A pilot phase (n = 12 patients) was conducted to identify the value of testing specific high-touch surfaces to assess environmental contamination. High-yield surfaces were included in the full evaluation phase (n = 20 patients) (Fig. 1). Samples were submitted for semiquantitative culture of C. auris and other multidrug-resistant organisms (MDROs) including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended-spectrum β-lactamase–producing Enterobacterales (ESBLs), and carbapenem-resistant Enterobacterales (CRE). Times to room surface contamination with C. auris and other MDROs after effective cleaning were analyzed. Results:Candida auris colonization was most frequently detected in the nares (72%) and palms and fingertips (72%). Cocolonization of body sites with other MDROs was common (Fig. 2). Surfaces located close to the patient were commonly recontaminated with C. auris by 4 hours after cleaning, including the overbed table (24%), bed handrail (24%), and TV remote or call button (19%). Environmental cocontamination was more common with resistant gram-positive organisms (MRSA and, VRE) than resistant gram-negative organisms (Fig. 3). C. auris was rarely detected on surfaces located outside a patient’s room (1 of 120 swabs; <1%). Conclusions: Environmental surfaces near C. auris–colonized patients were rapidly recontaminated after cleaning and disinfection. Cocolonization of skin and environment with other MDROs was common, with resistant gram-positive organisms predominating over gram-negative organisms on environmental surfaces. Limitations include lack of organism sequencing or typing to confirm environmental contamination was from the room resident. Rapid recontamination of environmental surfaces after manual cleaning and disinfection suggests that alternate mitigation strategies should be evaluated.
The name of the genus Lycium originates from the Greek name lykion for a thorny shrub, derived from Lycia, the name of an ancient country in Asia Minor where a similar spiny shrub was found. The specific epithet ferocissimum comes from the Latin ferox, meaning “bold” or “fearless,” referring to the very spiny nature of the shrub (Green 1994; Parsons and Cuthbertson 2001).
Evidence from animal models demonstrate that intrauterine growth restriction (IUGR) alters airway structure and function which may affect susceptibility to disease. Airway inflammation and dysregulated epithelial barrier properties are features of asthma which have not been examined in the context of IUGR. This study used a maternal hypoxia-induced IUGR mouse model to assess lung-specific and systemic inflammation and airway epithelial tight junctions (TJs) protein expression. Pregnant BALB/c mice were housed under hypoxic conditions (10.5% O2) from gestational day (GD) 11 to 17.5 (IUGR group; term, GD 21). Following hypoxic exposure, mice were returned to a normoxic environment (21% O2). A Control group was housed under normoxic conditions throughout pregnancy. Offspring weights were recorded at 2 and 8 weeks of age and euthanized for bronchoalveolar lavage (BAL) and peritoneal cavity fluid collection for inflammatory cells counts. From a separate group of mice, right lungs were collected for Western blotting of TJs proteins. IUGR offspring had greater inflammatory cells in the BAL fluid but not in peritoneal fluid compared with Controls. At 8 weeks of age, interleukin (IL)-2, IL-13, and eotaxin concentrations were higher in male IUGR compared with male Control offspring but not in females. IUGR had no effect on TJs protein expression. Maternal hypoxia-induced IUGR increases inflammatory cells in the BAL fluid of IUGR offspring with no difference in TJs protein expression. Increased cytokine release, specific to the lungs of IUGR male offspring, indicates that both IUGR and sex can influence susceptibility to airway disease.
Introduction: Point of care ultrasound (PoCUS) has become an established tool in the initial management of patients with undifferentiated hypotension in the emergency department (ED). Current established protocols (e.g. RUSH and ACES) were developed by expert user opinion, rather than objective, prospective data. Recently the SHoC Protocol was published, recommending 3 core scans; cardiac, lung, and IVC; plus other scans when indicated clinically. We report the abnormal ultrasound findings from our international multicenter randomized controlled trial, to assess if the recommended 3 core SHoC protocol scans were chosen appropriately for this population. Methods: Recruitment occurred at seven centres in North America (4) and South Africa (3). Screening at triage identified patients (SBP<100 or shock index>1) who were randomized to PoCUS or control (standard care with no PoCUS) groups. All scans were performed by PoCUS-trained physicians within one hour of arrival in the ED. Demographics, clinical details and study findings were collected prospectively. A threshold incidence for positive findings of 10% was established as significant for the purposes of assessing the appropriateness of the core recommendations. Results: 138 patients had a PoCUS screen completed. All patients had cardiac, lung, IVC, aorta, abdominal, and pelvic scans. Reported abnormal findings included hyperdynamic LV function (59; 43%); small collapsing IVC (46; 33%); pericardial effusion (24; 17%); pleural fluid (19; 14%); hypodynamic LV function (15; 11%); large poorly collapsing IVC (13; 9%); peritoneal fluid (13; 9%); and aortic aneurysm (5; 4%). Conclusion: The 3 core SHoC Protocol recommendations included appropriate scans to detect all pathologies recorded at a rate of greater than 10 percent. The 3 most frequent findings were cardiac and IVC abnormalities, followed by lung. It is noted that peritoneal fluid was seen at a rate of 9%. Aortic aneurysms were rare. This data from the first RCT to compare PoCUS to standard care for undifferentiated hypotensive ED patients, supports the use of the prioritized SHoC protocol, though a larger study is required to confirm these findings.
Automated detection and identification of weeds in crop fields is the greatest obstacle to development of practical site-specific weed management systems. Research progress is summarized for two different approaches to the problem, remote sensing weed mapping and ground-based detection using digital cameras or nonimaging sensors. The general spectral and spatial limitations reported for each type of weed identification system are reviewed. Airborne remote sensing has been successful for detection of distinct weed patches when the patches are dense and uniform and have unique spectral characteristics. Identification of weeds is hampered by spectral mixing in the relatively large pixels (typically larger than 1 by 1 m) and will not be possible from imagery where weed seedlings are sparsely distributed among crop plants. The use of multispectral imaging sensors such as color digital cameras on a ground-based mobile platform shows more promise for weed identification in field crops. Spectral features plus spatial features such as leaf shape and texture and plant organization may be extracted from these images. However, there is a need for research in areas such as artificial lighting, spectral band requirements, image processing, multiple spatial resolution systems, and multiperspective images.
Introduction: Point of care ultrasound has become an established tool in the initial management of patients with undifferentiated hypotension. Current established protocols (RUSH, ACES, etc) were developed by expert user opinion, rather than objective, prospective data. We wished to use reported disease incidence to develop an informed approach to PoCUS in hypotension using a “4 F’s” approach: Fluid; Form; Function; Filling. Methods: We summarized the incidence of PoCUS findings from an international multicentre RCT, and using a modified Delphi approach incorporating this data we obtained the input of 24 international experts associated with five professional organizations led by the International Federation of Emergency Medicine. The modified Delphi tool was developed to reach an international consensus on how to integrate PoCUS for hypotensive emergency department patients. Results: Rates of abnormal PoCUS findings from 151 patients with undifferentiated hypotension included left ventricular dynamic changes (43%), IVC abnormalities (27%), pericardial effusion (16%), and pleural fluid (8%). Abdominal pathology was rare (fluid 5%, AAA 2%). After two rounds of the survey, using majority consensus, agreement was reached on a SHoC-hypotension protocol comprising: A. Core: 1. Cardiac views (Sub-xiphoid and parasternal windows for pericardial fluid, cardiac form and ventricular function); 2. Lung views for pleural fluid and B-lines for filling status; and 3. IVC views for filling status; B. Supplementary: Additional cardiac views; and C. Additional views (when indicated) including peritoneal fluid, aorta, pelvic for IUP, and proximal leg veins for DVT. Conclusion: An international consensus process based on prospectively collected disease incidence has led to a proposed SHoC-hypotension PoCUS protocol comprising a stepwise clinical-indication based approach of Core, Supplementary and Additional PoCUS views.
Introduction: Point of care ultrasound (PoCUS) provides invaluable information during resuscitation efforts in cardiac arrest by determining presence/absence of cardiac activity and identifying reversible causes such as pericardial tamponade. There is no agreed guideline on how to safely and effectively incorporate PoCUS into the advanced cardiac life support (ACLS) algorithm. We consider that a consensus-based priority checklist using a “4 F’s” approach (Fluid; Form; Function; Filling), would provide a better algorithm during ACLS. Methods: The ultrasound subcommittee of the Australasian College for Emergency Medicine (ACEM) drafted a checklist incorporating PoCUS into the ACLS algorithm. This was further developed using the input of 24 international experts associated with five professional organizations led by the International Federation of Emergency Medicine. A modified Delphi tool was developed to reach an international consensus on how to integrate ultrasound into cardiac arrest algorithms for emergency department patients. Results: Consensus was reached following 3 rounds. The agreed protocol focuses on the timing of PoCUS as well as the specific clinical questions. Core cardiac windows performed during the rhythm check pause in chest compressions are the sub-xiphoid and parasternal cardiac views. Either view should be used to detect pericardial fluid, as well as examining ventricular form (e.g. right heart strain) and function, (e.g. asystole versus organized cardiac activity). Supplementary views include lung views (for absent lung sliding in pneumothorax and for pleural fluid), and IVC views for filling. Additional ultrasound applications are for endotracheal tube confirmation, proximal leg veins for DVT, or for sources of blood loss (AAA, peritoneal/pelvic fluid). Conclusion: The authors hope that this process will lead to a consensus-based SHoC-cardiac arrest guideline on incorporating PoCUS into the ACLS algorithm.
To determine the source and identify control measures of an outbreak of Tsukamurella species bloodstream infections at an outpatient oncology facility.
Design.
Epidemiologic investigation of the outbreak with a case-control study.
Methods.
A case was an infection in which Tsukamurella species was isolated from a blood or catheter tip culture during the period January 2011 through June 2012 from a patient of the oncology clinic. Laboratory records of area hospitals and patient charts were reviewed. A case-control study was conducted among clinic patients to identify risk factors for Tsukamurella species bloodstream infection. Clinic staff were interviewed, and infection control practices were assessed.
Results.
Fifteen cases of Tsukamurella (Tsukamurella pulmonis or Tsukamurella tyrosinosolvens) bloodstream infection were identified, all in patients with underlying malignancy and indwelling central lines. The median age of case patients was 68 years; 47% were male. The only significant risk factor for infection was receipt of saline flush from the clinic during the period September–October 2011 (P = .03), when the clinic had been preparing saline flush from a common-source bag of saline. Other infection control deficiencies that were identified at the clinic included suboptimal procedures for central line access and preparation of chemotherapy.
Conclusion.
Although multiple infection control lapses were identified, the outbreak was likely caused by improper preparation of saline flush syringes by the clinic. The outbreak demonstrates that bloodstream infections among oncology patients can result from improper infection control practices and highlights the critical need for increased attention to and oversight of infection control in outpatient oncology settings.
The spread of two strains of Staphylococcus aureus with high level resistance to mupirocin is described. The resistance proved to be easily transferred to other S. aureus strains by filter mating experiments and on the skin of mice. No plasmid band corresponding to the resistance could be demonstrated by agarose gel electrophoresis or by caesium chloride gradient centrifugation but cleavage of ‘chromosomal’ DNA from resistant recipients showed bright bands of DNA absent from sensitive controls.
The classic application of dual integral equations occurs in connexion with the potential of a circular disc (e.g. Titchmarsh (9), p. 334). Suppose that the disc lies in z = 0, 0≤ρ≤1, where we use cylindrical coordinates (p, z). Then it is required to find a solution of
such that on z = 0
Separation of variables in conjunction with the conditions that ø is finite on the axis and ø tends to zero as z tends to plus infinity yields the particular solution .
In (1), § 6.2, a multiplying factor method has been used to solve certain dual integral equations. The results are then used to solve a single integral equation of the Wiener-Hopf type. In this note we indicate how a related technique can be used to solve Wiener-Hopf integral equations directly. Consider
where
Define
where α = σ+iτ, and F+(α) is regular for τ>q; K(α) is regular and non-zero in −p < τ < p. For simplicity we restrict ourselves to the case where
We consider the following problem: A potential function φ satisfies Laplace's equation ∇2φ = φxx + φyy = 0 in a region R bounded by a closed curve C on which mixed boundary conditions are specified, i.e. φ = f(s) on a part A of the boundary and ∂φ/∂n = g(s) on a part B, where C = A + B and distance along C is denoted by s. Electrostatic problems of this type have been solved approximately in (1) and (2) by formulating them in terms of integral equations and then applying variational principles to the integral equations. In that approach, attention is concentrated on integrals over the boundary of the region R. The most common type of variational principle for potential problems involves integrals over the region R rather than integrals over the boundary of R. An example is given by the Rayleigh-Ritz method which depends on the stationary character of Dirichlet's integral
In this paper we show that the variational principles used in (1), (2), are closely connected with the more usual type of variational principles, by deriving the principles used in (1), (2) from inequalities deduced by considering integrals of type (1) over the region R.
Global and regional targets to reduce the rate of biodiversity loss bring with them the need to measure the state of nature and how it is changing. A number of different biodiversity indicators have been developed in response and here we consider bird population indicators in Europe. Birds are often used as surrogates for other elements of biodiversity because they are so well known and well studied, and not for their unique intrinsic value as environmental indicators. Yet, in certain situations and at particular scales, trends in bird populations correlate with those of other taxa making them a valuable biodiversity indicator with appropriate caveats. In this paper, we look at two case studies, in the UK and Europe as a whole, where headline bird indicators, that is, summary statistics based on bird population trends, have been developed and used to inform and assist policy makers. Wild bird indicators have been adopted by many European countries and by the European Union as indicators of biodiversity and of sustainable development. In the discussion, we review the strengths and weaknesses of using bird populations in this way, and look forward to how this work might be developed and expanded.