We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Posttraumatic stress disorder (PTSD) has been associated with advanced epigenetic age cross-sectionally, but the association between these variables over time is unclear. This study conducted meta-analyses to test whether new-onset PTSD diagnosis and changes in PTSD symptom severity over time were associated with changes in two metrics of epigenetic aging over two time points.
Methods
We conducted meta-analyses of the association between change in PTSD diagnosis and symptom severity and change in epigenetic age acceleration/deceleration (age-adjusted DNA methylation age residuals as per the Horvath and GrimAge metrics) using data from 7 military and civilian cohorts participating in the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (total N = 1,367).
Results
Meta-analysis revealed that the interaction between Time 1 (T1) Horvath age residuals and new-onset PTSD over time was significantly associated with Horvath age residuals at T2 (meta β = 0.16, meta p = 0.02, p-adj = 0.03). The interaction between T1 Horvath age residuals and changes in PTSD symptom severity over time was significantly related to Horvath age residuals at T2 (meta β = 0.24, meta p = 0.05). No associations were observed for GrimAge residuals.
Conclusions
Results indicated that individuals who developed new-onset PTSD or showed increased PTSD symptom severity over time evidenced greater epigenetic age acceleration at follow-up than would be expected based on baseline age acceleration. This suggests that PTSD may accelerate biological aging over time and highlights the need for intervention studies to determine if PTSD treatment has a beneficial effect on the aging methylome.
The global population and status of Snowy Owls Bubo scandiacus are particularly challenging to assess because individuals are irruptive and nomadic, and the breeding range is restricted to the remote circumpolar Arctic tundra. The International Union for Conservation of Nature (IUCN) uplisted the Snowy Owl to “Vulnerable” in 2017 because the suggested population estimates appeared considerably lower than historical estimates, and it recommended actions to clarify the population size, structure, and trends. Here we present a broad review and status assessment, an effort led by the International Snowy Owl Working Group (ISOWG) and researchers from around the world, to estimate population trends and the current global status of the Snowy Owl. We use long-term breeding data, genetic studies, satellite-GPS tracking, and survival estimates to assess current population trends at several monitoring sites in the Arctic and we review the ecology and threats throughout the Snowy Owl range. An assessment of the available data suggests that current estimates of a worldwide population of 14,000–28,000 breeding adults are plausible. Our assessment of population trends at five long-term monitoring sites suggests that breeding populations of Snowy Owls in the Arctic have decreased by more than 30% over the past three generations and the species should continue to be categorised as Vulnerable under the IUCN Red List Criterion A2. We offer research recommendations to improve our understanding of Snowy Owl biology and future population assessments in a changing world.
We study the association of shareholder returns with liberalization in government policy during Britain's railway run-up of 1844–5. The findings sustain two main claims. First, the railway returns during the run-up were associated with the advent of liberalizing policies, especially related to free trade, enhanced transparency and governance of firms, and industry consolidation. Second, analysis of cross-sectional variation reveals higher returns to large railways in the South and Midlands of England, several of which were leading consolidators. This study is the first to report an association between policy liberalization and run-up returns and to identify consolidators as the prime beneficiaries of the liberalization.
Bipolar I disorder (BD-I) is a chronic and recurrent mood disorder characterized by alternating episodes of depression and mania; it is also associated with substantial morbidity and mortality and with clinically significant functional impairments. While previous studies have used functional magnetic resonance imaging (fMRI) to examine neural abnormalities associated with BD-I, they have yielded mixed findings, perhaps due to differences in sampling and experimental design, including highly variable mood states at the time of scan.
Objectives
The purpose of this study is to advance our understanding of the neural basis of BD-I and mania, as measured by fMRI activation studies, and to inform the development of more effective brain-based diagnostic systems and clinical treatments.
Methods
We conducted a large-scale meta-analysis of whole-brain fMRI activation studies that compared participants with BD-I, assessed during a manic episode, to age-matched healthy controls. Following PRISMA guidelines, we conducted a comprehensive PubMed literature search using two independent coding teams to evaluate primary studies according to pre-established inclusion criteria. We then used multilevel kernel density analysis (MKDA), a well-established, voxel-wise, whole-brain, meta-analytic approach, to quantitatively synthesize all qualifying primary fMRI activation studies of mania. We used ensemble thresholding (p<0.05-0.0001) to minimize cluster size detection bias, and 10,000 Monte Carlo simulations to correct for multiple comparisons.
Results
We found that participants with BD-I (N=2,042), during an active episode of mania and relative to age-matched healthy controls (N=1,764), exhibit a pattern of significantly (p<0.05-0.0001; FWE-corrected) different activation in multiple brain regions of the cerebral cortex and basal ganglia across a variety of experimental tasks.
Conclusions
This study supports the formulation of a robust neural basis for BD-I during manic episodes and advances our understanding of the pattern of abnormal activation in this disorder. These results may inform the development of novel brain-based clinical tools for bipolar disorder such as diagnostic biomarkers, non-invasive brain stimulation, and treatment-matching protocols. Future studies should compare the neural signatures of BD-I to other related disorders to facilitate the development of protocols for differential diagnosis and improve treatment outcomes in patients with BD-I.
OBJECTIVES/GOALS: Cachexia is the involuntary and irreversible loss of muscle and fat and is a major cause of morbidity and mortality in head and neck cancer (HNC). It remains a poorly understood disease diagnosed by weight loss and a confluence of symptoms. We explored the metabolic and inflammatory mechanisms of cachexia symptoms via an multiomics network algorithm. METHODS/STUDY POPULATION: Prior to chemoradiotherapy, HNC subjects completed questionnaires and donated blood for untargeted (metabolites) and targeted (lipids and cytokines) assays. Metabolites and lipids were measured by liquid chromatography mass spectrometry. Cytokines were measured by multiplex assays. We plotted a multiomics network graph by estimating partial least squares correlations amongst metabolites, lipids, cytokines, and common cachexia symptoms—max percent weight loss over 1 year, baseline BMI, fatigue, performance, albumin, hemoglobin, and white blood cell count. To interpret the network, an algorithm identified highly correlated clusters of metabolites-lipids-cytokines-symptoms representing possible biological relatedness, which were functionally annotated via metabolic enrichment analysis. RESULTS/ANTICIPATED RESULTS: In 123 subjects (59 years of age, 72% male, 84% white, avg weight loss of 13%), we analyzed 186 metabolites, 54 lipids, 7 cytokines and 7 cachexia symptoms. We required a correlation >0.25 and P-value <.05 to be included in the network graph, resulting in 323 connections and 3 identified clusters. Max weight loss and baseline BMI were in a cluster enriched by unsaturated fatty acid biosynthesis (P<.0001) and arachidonic acid (P=.01) metabolic pathways but not linked to inflammation cytokines. The five other cachexia symptoms were in a cluster with 4 cytokines (C-reactive protein, interleukin 6, IL10, IL1, Tumor necrosis factor receptor 2) and enriched by aminoacyl tRNA (P<.01) and valine biosynthesis (P=.02). We observed no meaningful differences when we stratified the analysis by human papillomavirus. DISCUSSION/SIGNIFICANCE: Cachexia symptoms in head and neck cancer may be linked to specific metabolic dysregulation—weight loss and BMI were linked to fatty acids; fatigue, anemia and others were linked to amino acids and inflammation. This information may allow for the recognition of a cachexic-metabolic subtype or provide novel targets for metabolic intervention.
Observations of radiocarbon (14C) in Earth’s atmosphere and other carbon reservoirs are important to quantify exchanges of CO2 between reservoirs. The amount of 14C is commonly reported in the so-called Delta notation, i.e., Δ14C, the decay- and fractionation-corrected departure of the ratio of 14C to total C from that ratio in an absolute international standard; this Delta notation permits direct comparison of 14C/C ratios in the several reservoirs. However, as Δ14C of atmospheric CO2, Δ14CO2 is based on the ratio of 14CO2 to total atmospheric CO2, its value can and does change not just because of change in the amount of atmospheric14CO2 but also because of change in the amount of total atmospheric CO2, complicating ascription of change in Δ14CO2 to change in one or the other quantity. Here we suggest that presentation of atmospheric 14CO2 amount as mole fraction relative to dry air (moles of 14CO2 per moles of dry air in Earth’s atmosphere), or as moles or molecules of 14CO2 in Earth’s atmosphere, all readily calculated from Δ14CO2 and the amount of atmospheric CO2 (with slight dependence on δ13CO2), complements presentation only as Δ14CO2, and can provide valuable insight into the evolving budget and distribution of atmospheric 14CO2.
We present and evaluate the prospects for detecting coherent radio counterparts to gravitational wave (GW) events using Murchison Widefield Array (MWA) triggered observations. The MWA rapid-response system, combined with its buffering mode ($\sim$4 min negative latency), enables us to catch any radio signals produced from seconds prior to hours after a binary neutron star (BNS) merger. The large field of view of the MWA ($\sim$$1\,000\,\textrm{deg}^2$ at 120 MHz) and its location under the high sensitivity sky region of the LIGO-Virgo-KAGRA (LVK) detector network, forecast a high chance of being on-target for a GW event. We consider three observing configurations for the MWA to follow up GW BNS merger events, including a single dipole per tile, the full array, and four sub-arrays. We then perform a population synthesis of BNS systems to predict the radio detectable fraction of GW events using these configurations. We find that the configuration with four sub-arrays is the best compromise between sky coverage and sensitivity as it is capable of placing meaningful constraints on the radio emission from 12.6% of GW BNS detections. Based on the timescales of four BNS merger coherent radio emission models, we propose an observing strategy that involves triggering the buffering mode to target coherent signals emitted prior to, during or shortly following the merger, which is then followed by continued recording for up to three hours to target later time post-merger emission. We expect MWA to trigger on $\sim$$5-22$ BNS merger events during the LVK O4 observing run, which could potentially result in two detections of predicted coherent emission.
Functional magnetic resonance imaging (fMRI) has been used to identify the neural activity of both youth and adults diagnosed with major depressive disorder (MDD) in comparison to healthy age-matched controls. Previously reported abnormalities in depressed youth appear to mostly align with those found in depressed adults; however, some of the reported aberrant brain activity in youth has not been consistent with what is observed in adults, and to our knowledge there has not yet been a formal, quantitative comparison of these two groups. In addition, it is not known whether these observed differences between youth and adults with depression are attributable to developmental age or length-of-illness.
Objectives
The aim of this study is to elucidate the similarities and differences in patterns of abnormal neural activity between adults and youth diagnosed with MDD and to then determine whether these observed differences are due to either developmental age or length-of-illness.
Methods
We used multilevel kernel density analysis (MKDA) with ensemble thresholding and triple subtraction to separately determine neural abnormalities throughout the whole brain in primary studies of depressed youth and depressed adults and then directly compare the observed abnormalities between each of those age groups. We then conducted further comparisons between multiple subgroups to control for age and length-of-illness and thereby determine the source of the observed differences between youth and adults with depression.
Results
Adults and youth diagnosed with MDD demonstrated reliable, differential patterns of abnormal activation in various brain regions throughout the cerebral cortex that are statistically significant (p < .05; FWE-corrected). In addition, several of these brain regions that exhibited differential patterns of neural activation between the two age groups can be reliably attributed to either developmental age or length-of-illness.
Conclusions
These findings indicate that there are common and disparate patterns of brain activity between youth and adults with MDD, several of which can be reliably attributed to developmental age or length-of-illness. These results expand our understanding of the neural basis of depression across development and course of illness and may be used to inform the development of new, age-specific clinical treatments as well as prevention strategies for this disorder.
Major depressive disorder (MDD) is a highly prevalent mental illness that frequently originates in early development and is pervasive during adolescence. Despite its high prevalence and early age of onset, our understanding of the potentially unique neural basis of MDD in this age group is still not well understood, and the existing primary literature on the topic includes many new and divergent results. This limited understanding of MDD in youth presents a critical need to further investigate its neural basis in youth and presents an opportunity to also improve clinical treatments that target its neural abnormalities.
Objectives
The present study aims to advance our understanding of the neural basis of MDD in youth by identifying abnormal functional activation in various brain regions compared with healthy controls.
Methods
We conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of MDD by using a well-established method, multilevel kernel density analysis (MKDA) with ensemble thresholding, to quantitatively combine all existing whole-brain fMRI studies of MDD in youth compared with healthy controls. This method involves a voxel-wise, whole-brain approach, that compares neural activation of patients with MDD to age-matched healthy controls across variations of task-based conditions, which we subcategorize into affective processing, executive functioning, positive valence, negative valence, and symptom provocation tasks.
Results
Youth with MDD exhibited statistically significant (p<0.05; FWE-corrected) hyperactivation and hypoactivation in multiple brain regions compared with age-matched healthy controls. These results include significant effects that are stable across various tasks as well as some that appear to depend on task conditions.
Conclusions
This study strengthens our understanding of the neural basis of MDD in youth and may also be used to help identify possible similarities and differences between youth and adults with depression. It may also help inform the development of new treatment interventions and tools for predicting unique treatment responses in youth with depression.
Curiosity toward the effects of psychedelic drugs on neural activation has increased due to their potential therapeutic benefits, particularly serotonergic psychedelics that act as 5-HT2A receptor agonists such as LSD, psilocybin, and MDMA. However, the pattern of their effects on neural activity in various brain regions in both clinical and healthy populations is still not well understood, and primary studies addressing this issue have sometimes generated inconsistent results.
Objectives
The present meta-analysis aims to advance our understanding of the most widely used serotonergic psychedelics – LSD, psilocybin, and MDMA – by examining their effects on the functional activation throughout the whole brain among both clinical and healthy participants.
Methods
We conducted this meta-analysis by applying multilevel kernel density analysis (MKDA) with ensemble thresholding to quantitatively combine existing functional magnetic resonance imaging (fMRI) studies that examined whole-brain functional activation of clinical or healthy participants who were administered a serotonergic psychedelic.
Results
Serotonergic psychedelics, including LSD, psilocybin, and MDMA, exhibited significant effects (α=0.05) on neural activation in several regions throughout the cerebral cortex and basal ganglia, including effects that may be common across and unique within each drug.
Conclusions
These observed effects of serotonergic psychedelics on neural activity advance our understanding of the functional neuroanatomy associated with their administration and may inform future studies of both their adverse and therapeutic effects, including emerging clinical applications for the treatment of several psychiatric disorders.
Major depressive disorder (MDD) is a highly prevalent mental illness that often first occurs or persists into adulthood and is considered the leading cause of disability and disease burden worldwide. Unfortunately, individuals diagnosed with MDD who seek treatment often experience limited symptom relief and may not achieve long-term remission, which is due in part to our limited understanding of its underlying pathophysiology. Many studies that use task-based functional magnetic resonance imaging (fMRI) have found abnormal activation in brain regions in adults diagnosed with MDD, but those findings are often inconsistent; in addition, previous meta-analyses that quantitatively integrate this large body literature have found conflicting results.
Objectives
This meta-analysis aims to advance our understanding of the neural basis of MDD in adults, as measured by fMRI activation studies, and address inconsistencies and discrepancies in the empirical literature.
Methods
We employed multilevel kernel density analysis (MKDA) with ensemble thresholding, a well-established method for voxel-wise, whole-brain meta-analyses, to conduct a quantitative comparison of all relevant primary fMRI activation studies of adult patients with MDD compared to age-matched healthy controls.
Results
We found that adults with MDD exhibited a reliable pattern of statistically significant (p<0.05; FWE-corrected) hyperactivation and hypoactivation in several brain regions compared to age-matched healthy controls across a variety of experimental tasks.
Conclusions
This study supports previous findings that there is reliable neural basis of MDD that can be detected across heterogenous fMRI studies. These results can be used to inform development of promising treatments for MDD, including protocols for personalized interventions. They also provide the opportunity for additional studies to examine the specificity of these effects among various populations-of-interest, including youth vs. adults with depression as well as other related mood and anxiety disorders.
Several hypotheses may explain the association between substance use, posttraumatic stress disorder (PTSD), and depression. However, few studies have utilized a large multisite dataset to understand this complex relationship. Our study assessed the relationship between alcohol and cannabis use trajectories and PTSD and depression symptoms across 3 months in recently trauma-exposed civilians.
Methods
In total, 1618 (1037 female) participants provided self-report data on past 30-day alcohol and cannabis use and PTSD and depression symptoms during their emergency department (baseline) visit. We reassessed participant's substance use and clinical symptoms 2, 8, and 12 weeks posttrauma. Latent class mixture modeling determined alcohol and cannabis use trajectories in the sample. Changes in PTSD and depression symptoms were assessed across alcohol and cannabis use trajectories via a mixed-model repeated-measures analysis of variance.
Results
Three trajectory classes (low, high, increasing use) provided the best model fit for alcohol and cannabis use. The low alcohol use class exhibited lower PTSD symptoms at baseline than the high use class; the low cannabis use class exhibited lower PTSD and depression symptoms at baseline than the high and increasing use classes; these symptoms greatly increased at week 8 and declined at week 12. Participants who already use alcohol and cannabis exhibited greater PTSD and depression symptoms at baseline that increased at week 8 with a decrease in symptoms at week 12.
Conclusions
Our findings suggest that alcohol and cannabis use trajectories are associated with the intensity of posttrauma psychopathology. These findings could potentially inform the timing of therapeutic strategies.
The fearful ape hypothesis proposes that heightened fearfulness in humans is adaptive. However, despite its attractive anthropocentric narrative, the evidence presented for greater fearfulness in humans versus other apes is not sufficient to support this claim. Conceptualization, context, and comparison are strongly lacking in Grossmann's proposal, but are key to understanding variation in the fear response among individuals and species.
Childhood adversities (CAs) predict heightened risks of posttraumatic stress disorder (PTSD) and major depressive episode (MDE) among people exposed to adult traumatic events. Identifying which CAs put individuals at greatest risk for these adverse posttraumatic neuropsychiatric sequelae (APNS) is important for targeting prevention interventions.
Methods
Data came from n = 999 patients ages 18–75 presenting to 29 U.S. emergency departments after a motor vehicle collision (MVC) and followed for 3 months, the amount of time traditionally used to define chronic PTSD, in the Advancing Understanding of Recovery After Trauma (AURORA) study. Six CA types were self-reported at baseline: physical abuse, sexual abuse, emotional abuse, physical neglect, emotional neglect and bullying. Both dichotomous measures of ever experiencing each CA type and numeric measures of exposure frequency were included in the analysis. Risk ratios (RRs) of these CA measures as well as complex interactions among these measures were examined as predictors of APNS 3 months post-MVC. APNS was defined as meeting self-reported criteria for either PTSD based on the PTSD Checklist for DSM-5 and/or MDE based on the PROMIS Depression Short-Form 8b. We controlled for pre-MVC lifetime histories of PTSD and MDE. We also examined mediating effects through peritraumatic symptoms assessed in the emergency department and PTSD and MDE assessed in 2-week and 8-week follow-up surveys. Analyses were carried out with robust Poisson regression models.
Results
Most participants (90.9%) reported at least rarely having experienced some CA. Ever experiencing each CA other than emotional neglect was univariably associated with 3-month APNS (RRs = 1.31–1.60). Each CA frequency was also univariably associated with 3-month APNS (RRs = 1.65–2.45). In multivariable models, joint associations of CAs with 3-month APNS were additive, with frequency of emotional abuse (RR = 2.03; 95% CI = 1.43–2.87) and bullying (RR = 1.44; 95% CI = 0.99–2.10) being the strongest predictors. Control variable analyses found that these associations were largely explained by pre-MVC histories of PTSD and MDE.
Conclusions
Although individuals who experience frequent emotional abuse and bullying in childhood have a heightened risk of experiencing APNS after an adult MVC, these associations are largely mediated by prior histories of PTSD and MDE.
Racial and ethnic groups in the USA differ in the prevalence of posttraumatic stress disorder (PTSD). Recent research however has not observed consistent racial/ethnic differences in posttraumatic stress in the early aftermath of trauma, suggesting that such differences in chronic PTSD rates may be related to differences in recovery over time.
Methods
As part of the multisite, longitudinal AURORA study, we investigated racial/ethnic differences in PTSD and related outcomes within 3 months after trauma. Participants (n = 930) were recruited from emergency departments across the USA and provided periodic (2 weeks, 8 weeks, and 3 months after trauma) self-report assessments of PTSD, depression, dissociation, anxiety, and resilience. Linear models were completed to investigate racial/ethnic differences in posttraumatic dysfunction with subsequent follow-up models assessing potential effects of prior life stressors.
Results
Racial/ethnic groups did not differ in symptoms over time; however, Black participants showed reduced posttraumatic depression and anxiety symptoms overall compared to Hispanic participants and White participants. Racial/ethnic differences were not attenuated after accounting for differences in sociodemographic factors. However, racial/ethnic differences in depression and anxiety were no longer significant after accounting for greater prior trauma exposure and childhood emotional abuse in White participants.
Conclusions
The present findings suggest prior differences in previous trauma exposure partially mediate the observed racial/ethnic differences in posttraumatic depression and anxiety symptoms following a recent trauma. Our findings further demonstrate that racial/ethnic groups show similar rates of symptom recovery over time. Future work utilizing longer time-scale data is needed to elucidate potential racial/ethnic differences in long-term symptom trajectories.
Understanding place-based contributors to health requires geographically and culturally diverse study populations, but sharing location data is a significant challenge to multisite studies. Here, we describe a standardized and reproducible method to perform geospatial analyses for multisite studies. Using census tract-level information, we created software for geocoding and geospatial data linkage that was distributed to a consortium of birth cohorts located throughout the USA. Individual sites performed geospatial linkages and returned tract-level information for 8810 children to a central site for analyses. Our generalizable approach demonstrates the feasibility of geospatial analyses across study sites to promote collaborative translational research.
We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding of Earth's sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments.
Technical summary
A synthesis is made of ten fields within climate science where there have been significant advances since mid-2019, through an expert elicitation process with broad disciplinary scope. Findings include: (1) a better understanding of equilibrium climate sensitivity; (2) abrupt thaw as an accelerator of carbon release from permafrost; (3) changes to global and regional land carbon sinks; (4) impacts of climate change on water crises, including equity perspectives; (5) adverse effects on mental health from climate change; (6) immediate effects on climate of the COVID-19 pandemic and requirements for recovery packages to deliver on the Paris Agreement; (7) suggested long-term changes to governance and a social contract to address climate change, learning from the current pandemic, (8) updated positive cost–benefit ratio and new perspectives on the potential for green growth in the short- and long-term perspective; (9) urban electrification as a strategy to move towards low-carbon energy systems and (10) rights-based litigation as an increasingly important method to address climate change, with recent clarifications on the legal standing and representation of future generations.
Social media summary
Stronger permafrost thaw, COVID-19 effects and growing mental health impacts among highlights of latest climate science.
In this chapter the major conservation issues bears face is reviewed and management actions that can address these conservation issues are highlighted. The future of bears across the world is bright for some species but dark for others. In some areas such as North America and in parts of Europe and Asia, bear populations have increased and stabilized because of increased management effort and increasing support for bears and their needs by the humans who share habitat with them. However, for most bear species, the future is uncertain. Andean bears continue to be threatened by habitat loss and human encroachment. In much of Asia outside Japan, Asiatic black bear, sloth bear, and sun bear populations are increasingly threatened by unmanaged excessive mortality combined with habitat loss to timber harvest, plantation agriculture, and human encroachment. The long-term future for polar bears is threatened by the unmanageable threat of climate change. Giant pandas are fragmented into small populations despite intense conservation efforts. Improving public and political support for bears is the most important need if we are to realize successful bear conservation and management.
This chapter comprises the following sections: names, taxonomy, subspecies and distribution, descriptive notes, habitat, movements and home range, activity patterns, feeding ecology, reproduction and growth, behavior, parasites and diseases, status in the wild, and status in captivity.