We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let M be a von Neumann algebra, let $\varphi $ be a normal faithful state on M and let $L^p(M,\varphi )$ be the associated Haagerup noncommutative $L^p$-spaces, for $1\leq p\leq \infty $. Let $D\in L^1(M,\varphi )$ be the density of $\varphi $. Given a positive map $T\colon M\to M$ such that $\varphi \circ T\leq C_1\varphi $ for some $C_1\geq 0$, we study the boundedness of the $L^p$-extension $T_{p,\theta }\colon D^{\frac {1-\theta }{p}} MD^{\frac {\theta }{p}}\to L^p(M,\varphi )$ which maps $D^{\frac {1-\theta }{p}} x D^{\frac {\theta }{p}}$ to $D^{\frac {1-\theta }{p}} T(x) D^{\frac {\theta }{p}}$ for all $x\in M$. Haagerup–Junge–Xu showed that $T_{p,{\frac {1}{2}}}$ is always bounded and left open the question whether $T_{p,\theta }$ is bounded for $\theta \not ={\frac {1}{2}}$. We show that for any $1\leq p<2$ and any $\theta \in [0, 2^{-1}(1-\sqrt {p-1})]\cup [2^{-1}(1+\sqrt {p-1}), 1]$, there exists a completely positive T such that $T_{p,\theta }$ is unbounded. We also show that if T is $2$-positive, then $T_{p,\theta }$ is bounded provided that $p\geq 2$ or $1\leq p<2$ and $\theta \in [1-p/2,p/2]$.
Let $\varphi$ be a normal semifinite faithful weight on a von Neumann algebra $A$, let $(\sigma ^\varphi _r)_{r\in {\mathbb R}}$ denote the modular automorphism group of $\varphi$, and let $T\colon A\to A$ be a linear map. We say that $T$ admits an absolute dilation if there exists another von Neumann algebra $M$ equipped with a normal semifinite faithful weight $\psi$, a $w^*$-continuous, unital and weight-preserving $*$-homomorphism $J\colon A\to M$ such that $\sigma ^\psi \circ J=J\circ \sigma ^\varphi$, as well as a weight-preserving $*$-automorphism $U\colon M\to M$ such that $T^k={\mathbb {E}}_JU^kJ$ for all integer $k\geq 0$, where $ {\mathbb {E}}_J\colon M\to A$ is the conditional expectation associated with $J$. Given any locally compact group $G$ and any real valued function $u\in C_b(G)$, we prove that if $u$ induces a unital completely positive Fourier multiplier $M_u\colon VN(G) \to VN(G)$, then $M_u$ admits an absolute dilation. Here, $VN(G)$ is equipped with its Plancherel weight $\varphi _G$. This result had been settled by the first named author in the case when $G$ is unimodular so the salient point in this paper is that $G$ may be nonunimodular, and hence, $\varphi _G$ may not be a trace. The absolute dilation of $M_u$ implies that for any $1\lt p\lt \infty$, the $L^p$-realization of $M_u$ can be dilated into an isometry acting on a noncommutative $L^p$-space. We further prove that if $u$ is valued in $[0,1]$, then the $L^p$-realization of $M_u$ is a Ritt operator with a bounded $H^\infty$-functional calculus.
Let ${\mathcal{D}}$ be a Schauder decomposition on some Banach space $X$. We prove that if ${\mathcal{D}}$ is not $R$-Schauder, then there exists a Ritt operator $T\in B(X)$ which is a multiplier with respect to ${\mathcal{D}}$ such that the set $\{T^{n}:n\geq 0\}$ is not $R$-bounded. Likewise, we prove that there exists a bounded sectorial operator $A$ of type $0$ on $X$ which is a multiplier with respect to ${\mathcal{D}}$ such that the set $\{e^{-tA}:t\geq 0\}$ is not $R$-bounded.
We establish the following results on higher order ${\mathcal{S}}^{p}$-differentiability, $1<p<\infty$, of the operator function arising from a continuous scalar function $f$ and self-adjoint operators defined on a fixed separable Hilbert space:
(i)$f$ is $n$ times continuously Fréchet ${\mathcal{S}}^{p}$-differentiable at every bounded self-adjoint operator if and only if $f\in C^{n}(\mathbb{R})$;
(ii) if $f^{\prime },\ldots ,f^{(n-1)}\in C_{b}(\mathbb{R})$ and $f^{(n)}\in C_{0}(\mathbb{R})$, then $f$ is $n$ times continuously Fréchet ${\mathcal{S}}^{p}$-differentiable at every self-adjoint operator;
(iii) if $f^{\prime },\ldots ,f^{(n)}\in C_{b}(\mathbb{R})$, then $f$ is $n-1$ times continuously Fréchet ${\mathcal{S}}^{p}$-differentiable and $n$ times Gâteaux ${\mathcal{S}}^{p}$-differentiable at every self-adjoint operator.
We also prove that if $f\in B_{\infty 1}^{n}(\mathbb{R})\cap B_{\infty 1}^{1}(\mathbb{R})$, then $f$ is $n$ times continuously Fréchet ${\mathcal{S}}^{q}$-differentiable, $1\leqslant q<\infty$, at every self-adjoint operator. These results generalize and extend analogous results of Kissin et al. (Proc. Lond. Math. Soc. (3)108(3) (2014), 327–349) to arbitrary $n$ and unbounded operators as well as substantially extend the results of Azamov et al. (Canad. J. Math.61(2) (2009), 241–263); Coine et al. (J. Funct. Anal.; doi:10.1016/j.jfa.2018.09.005); Peller (J. Funct. Anal.233(2) (2006), 515–544) on higher order ${\mathcal{S}}^{p}$-differentiability of $f$ in a certain Wiener class, Gâteaux ${\mathcal{S}}^{2}$-differentiability of $f\in C^{n}(\mathbb{R})$ with $f^{\prime },\ldots ,f^{(n)}\in C_{b}(\mathbb{R})$, and Gâteaux ${\mathcal{S}}^{q}$-differentiability of $f$ in the intersection of the Besov classes $B_{\infty 1}^{n}(\mathbb{R})\cap B_{\infty 1}^{1}(\mathbb{R})$. As an application, we extend ${\mathcal{S}}^{p}$-estimates for operator Taylor remainders to a broad set of symbols. Finally, we establish explicit formulas for Fréchet differentials and Gâteaux derivatives.
We compare various functional calculus properties of Ritt operators. We show the existence of a Ritt operator T: X → X on some Banach space X with the following property: T has a bounded H∞-functional calculus with respect to the unit disc 𝔻(that is, T is polynomially bounded) but T does not have any bounded H∞-functional calculus with respect to a Stolz domain of 𝔻 with vertex at 1. Also we show that for an R-Ritt operator the unconditional Ritt condition of Kalton and Portal is equivalent to the existence of a bounded H∞-functional calculus with respect to such a Stolz domain.
Let K be any compact set. The C*-algebra C(K) is nuclear and any bounded homomorphism from C(K) into B(H), the algebra of all bounded operators on some Hilbert space H, is automatically completely bounded. We prove extensions of these results to the Banach space setting, using the key concept ofR-boundedness. Then we apply these results to operators with a uniformly bounded H∞-calculus, as well as to unconditionality on Lp. We show that any unconditional basis on Lp ‘is’ an unconditional basis on L2 after an appropriate change of density.
Given a Banach space E, let us denote by Max(E) the largest operator space structure on E. Recently Paulsen-Pisier and, independently, Junge proved that for any Banach spaces E, F, isomorphically where and respectively denote the Haagerup tensor product and the spatial tensor product of operator spaces. In this paper we show that, in general, this equality does not hold completely isomorphically.
We consider maximal regularity in the ${{H}^{p}}$ sense for the Cauchy problem ${{u}^{\prime }}(t)+Au(t)=f(t)(t\,\in \mathbb{R})$, where $A$ is a closed operator on a Banach space $X$ and $f$ is an $X$-valued function defined on $\mathbb{R}$. We prove that if $X$ is an AUMD Banach space, then $A$ satisfies ${{H}^{p}}$-maximal regularity if and only if $A$ is Rademacher sectorial of type $<\frac{\pi }{2}.$ Moreover we find an operator $A$ with ${{H}^{p}}$-maximal regularity that does not have the classical ${{L}^{p}}$-maximal regularity. We prove a related Mikhlin type theorem for operator valued Fourier multipliers on Hardy spaces ${{H}^{p}}(\mathbb{R};\,X)$, in the case when $X$ is an AUMD Banach space.
Let X be a Banach space with the analytic UMD property, and let A and B be two commuting sectorial operators on X which admit bounded H∞ functional calculi with respect to angles θ1 and θ2 satisfying θ1 + θ2 > π. It was proved by Kalton and Weis that in this case, A + B is closed. The first result of this paper is that under the same conditions, A + B actually admits a bounded H∞ functional calculus. Our second result is that given a Banach space X and a number 1 ≦ p < ∞, the derivation operator on the vector valued Hardy space Hp (R; X) admits a bounded H∞ functional calculus if and only if X has the analytic UMD property. This is an ‘analytic’ version of the well-known characterization of UMD by the boundedness of the H∞ functional calculus of the derivation operator on vector valued Lp-spaces Lp (R; X) for 1 < p < ∞ (Dore-Venni, Hieber-Prüss, Prüss).
New results concerning the so-called Weiss conjecture on admissible operators for bounded analytic semigroups are given. Let \[ \left(T_t\right)_{t\geqslant 0} \] be a bounded analytic semigroup with generator $-A$ on some Banach space $X$. It is proved that if $A^{1/2}$ is admissible for $A$, that is, if there is an estimate \[ \int_{0}^{\infty^{\vphantom{-1}}}\|A^{1/2}e^{-tA}x\|^2\, dt\leqslant M^2\|x\|^2,\] then any continuous mapping $C : D\left(A\right)\longrightarrow Y$ valued in a Banach space $Y$ is admissible for $A$ provided that there is an estimate \[ \|\left(-{\rm Re}\left({\lambda}\right)\right)^{1/2}C\left(\lambda -A\right)^{-1}\|\leqslant K \] for $\lambda\in\mathbb{C}$, ${\rm Re}\left({\lambda}\right)<0$. This holds in particular if \[ \left(T_t\right)_{t\geqslant 0}\] is a contractive (analytic) semigroup on Hilbert space. In the converse direction, it is shown that this may happen for a bounded analytic semigroup on Hilbert space that is not similar to a contractive one. Applications in non-Hilbertian Banach spaces are also given.
Let X be an SQp-space, i.e. a quotient of a subspace of some Lp-space. Let B ⊂ B(X) be a subalgebra of all bounded operators on X and let I ⊂ B be a closed ideal. We show that the quotient algebra B/I is isometrically homomorphic to a subalgebra of B(Y) for some SQp-space Y. This generalizes a theorem of Bernard and Cole, corresponding to p = 2, which states that any quotient of an operator algebra is an operator algebra.
We prove that given an operator space structure on a dual Banach space Y*, it is not necessarily the dual one of some operator space structure on Y. This allows us to show that Sakai's theorem providing the identification between C*-algebras having a predual and von Neumann algebras does not extend to the category of operator spaces. We also include a related result about completely bounded operators from B(ℓ2)* into the operator Hilbert space OH.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.