We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a split semisimple group over a global function field $K$. Given a cuspidal automorphic representation $\Pi$ of $G$ satisfying a technical hypothesis, we prove that for almost all primes $\ell$, there is a cyclic base change lifting of $\Pi$ along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $K$. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group $G$ over a local function field $F$, and almost all primes $\ell$, any irreducible admissible representation of $G(F)$ admits a base change along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $F$. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.
In his work on modularity of elliptic curves and Fermat’s last theorem, A. Wiles introduced two measures of congruences between Galois representations and between modular forms. One measure is related to the order of a Selmer group associated to a newform $f \in S_2(\Gamma _0(N))$ (and closely linked to deformations of the Galois representation $\rho _f$ associated to f), whilst the other measure is related to the congruence module associated to f (and is closely linked to Hecke rings and congruences between f and other newforms in $S_2(\Gamma _0(N))$). The equality of these two measures led to isomorphisms $R={\mathbf T}$ between deformation rings and Hecke rings (via a numerical criterion for isomorphisms that Wiles proved) and showed these rings to be complete intersections.
We continue our study begun in [BKM21] of the Wiles defect of deformation rings and Hecke rings (at a newform f) acting on the cohomology of Shimura curves over ${\mathbf Q}$: It is defined to be the difference between these two measures of congruences. The Wiles defect thus arises from the failure of the Wiles numerical criterion at an augmentation $\lambda _f:{\mathbf T} \to {\mathcal O}$. In situations we study here, the Taylor–Wiles–Kisin patching method gives an isomorphism $ R={\mathbf T}$ without the rings being complete intersections. Using novel arguments in commutative algebra and patching, we generalize significantly and give different proofs of the results in [BKM21] that compute the Wiles defect at $\lambda _f: R={\mathbf T} \to {\mathcal O}$, and explain in an a priori manner why the answer in [BKM21] is a sum of local defects. As a curious application of our work we give a new and more robust approach to the result of Ribet–Takahashi that computes change of degrees of optimal parametrizations of elliptic curves over ${\mathbf Q}$ by Shimura curves as we vary the Shimura curve. The results we prove are not attainable using only the methods of Ribet–Takahashi.
It is proved that if $\varphi \colon A\to B$ is a local homomorphism of commutative noetherian local rings, a nonzero finitely generated B-module N whose flat dimension over A is at most $\operatorname {edim} A - \operatorname {edim} B$ is free over B and $\varphi $ is a special type of complete intersection. This result is motivated by a ‘patching method’ developed by Taylor and Wiles and a conjecture of de Smit, proved by the first author, dealing with the special case when N is flat over A.
In his work on modularity theorems, Wiles proved a numerical criterion for a map of rings $R\to T$ to be an isomorphism of complete intersections. He used this to show that certain deformation rings and Hecke algebras associated to a mod $p$ Galois representation at non-minimal level are isomorphic and complete intersections, provided the same is true at minimal level. In this paper we study Hecke algebras acting on cohomology of Shimura curves arising from maximal orders in indefinite quaternion algebras over the rationals localized at a semistable irreducible mod $p$ Galois representation $\bar {\rho }$. If $\bar {\rho }$ is scalar at some primes dividing the discriminant of the quaternion algebra, then the Hecke algebra is still isomorphic to the deformation ring, but is not a complete intersection, or even Gorenstein, so the Wiles numerical criterion cannot apply. We consider a weight-2 newform $f$ which contributes to the cohomology of the Shimura curve and gives rise to an augmentation $\lambda _f$ of the Hecke algebra. We quantify the failure of the Wiles numerical criterion at $\lambda _f$ by computing the associated Wiles defect purely in terms of the local behavior at primes dividing the discriminant of the global Galois representation $\rho _f$ which $f$ gives rise to by the Eichler–Shimura construction. One of the main tools used in the proof is Taylor–Wiles–Kisin patching.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.