We present the quadratic Weyl sums
with θ,x∈[0,1) as cocycles over a measure-preserving transformation on the two-dimensional torus. We show then that these cocycles are not coboundaries for every irrational θ∈[0,1), and that for a dense Gδ set of θ∈[0,1) the corresponding skew product is ergodic. For each of those θ, there exists a dense Gδ set of full measure of x∈[0,1) for which the sequence
, n=1,2,… , is dense in
.