We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a presilting object in a triangulated category, we find necessary and sufficient conditions for the existence of a complement. This is done both for classic (pre)silting objects and for large (pre)silting objects. The key technique is the study of associated co-t-structures. As a consequence of our techniques we recover some known cases of the existence of complements, including for derived categories of some hereditary abelian categories and for silting-discrete algebras. Moreover, we also show that a finite-dimensional algebra is silting discrete if and only if every bounded large silting complex is equivalent to a compact one.
Let $\textsf{T}$ be a triangulated category with shift functor $\Sigma \colon \textsf{T} \to \textsf{T}$. Suppose $(\textsf{A},\textsf{B})$ is a co-t-structure with coheart $\textsf{S} = \Sigma \textsf{A} \cap \textsf{B}$ and extended coheart $\textsf{C} = \Sigma^2 \textsf{A} \cap \textsf{B} = \textsf{S}* \Sigma \textsf{S}$, which is an extriangulated category. We show that there is a bijection between co-t-structures $(\textsf{A}^{\prime},\textsf{B}^{\prime})$ in $\textsf{T}$ such that $\textsf{A} \subseteq \textsf{A}^{\prime} \subseteq \Sigma \textsf{A}$ and complete cotorsion pairs in the extended coheart $\textsf{C}$. In the case that $\textsf{T}$ is Hom-finite, $\textbf{k}$-linear and Krull–Schmidt, we show further that there is a bijection between complete cotorsion pairs in $\textsf{C}$ and functorially finite torsion classes in $\textsf{mod}\, \textsf{S}$.
Let $Q$ be an acyclic quiver and $w \geqslant 1$ be an integer. Let $\mathsf {C}_{-w}({\mathbf {k}} Q)$ be the $(-w)$-cluster category of ${\mathbf {k}} Q$. We show that there is a bijection between simple-minded collections in $\mathsf {D}^b({\mathbf {k}} Q)$ lying in a fundamental domain of $\mathsf {C}_{-w}({\mathbf {k}} Q)$ and $w$-simple-minded systems in $\mathsf {C}_{-w}({\mathbf {k}} Q)$. This generalises the same result of Iyama–Jin in the case that $Q$ is Dynkin. A key step in our proof is the observation that the heart $\mathsf {H}$ of a bounded t-structure in a Hom-finite, Krull–Schmidt, ${\mathbf {k}}$-linear saturated triangulated category $\mathsf {D}$ is functorially finite in $\mathsf {D}$ if and only if $\mathsf {H}$ has enough injectives and enough projectives. We then establish a bijection between $w$-simple-minded systems in $\mathsf {C}_{-w}({\mathbf {k}} Q)$ and positive $w$-noncrossing partitions of the corresponding Weyl group $W_Q$.
We give a complete description of a basis of the extension spaces between indecomposable string and quasi-simple band modules in the module category of a gentle algebra.
Stability conditions on triangulated categories were introduced by Bridgeland as a ‘continuous’ generalisation of t-structures. The set of locally-finite stability conditions on a triangulated category is a manifold that has been studied intensively. However, there are mainstream triangulated categories whose stability manifold is the empty set. One example is Dc(k[X]/(X2)), the compact derived category of the dual numbers over an algebraically closed field k. This is one of the motivations in this paper for introducing co-stability conditions as a ‘continuous’ generalisation of co-t-structures. Our main result is that the set of nice co-stability conditions on a triangulated category is a manifold. In particular, we show that the co-stability manifold of Dc(k[X]/(X2)) is ℂ.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.