We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate when the algebraic numerical range is a C-spectral set in a Banach algebra. While providing several counterexamples based on classical ideas as well as combinatorial Banach spaces, we discuss positive results for matrix algebras and provide an absolute constant in the case of complex $2\times 2$-matrices with the induced $1$-norm. Furthermore, we discuss positive results for infinite-dimensional Banach algebras, including the Calkin algebra.
A subset of positive integers F is a Schreier set if it is nonempty and $|F|\leqslant \min F$ (here $|F|$ is the cardinality of F). For each positive integer k, we define $k\mathcal {S}$ as the collection of all the unions of at most k Schreier sets. Also, for each positive integer n, let $(k\mathcal {S})^n$ be the collection of all sets in $k\mathcal {S}$ with maximum element equal to n. It is well known that the sequence $(|(1\mathcal {S})^n|)_{n=1}^\infty $ is the Fibonacci sequence. In particular, the sequence satisfies a linear recurrence. We show that the sequence $(|(k\mathcal {S})^n|)_{n=1}^\infty $ satisfies a linear recurrence for every positive k.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.