We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Metric space topology, as the generalization to abstract spaces of the theory of sets of points on a line or in a plane, unifies many branches of classical analysis and is necessary introduction to functional analysis. Professor Copson's book, which is based on lectures given to third-year undergraduates at the University of St Andrews, provides a more leisurely treatment of metric spaces than is found in books on functional analysis, which are usually written at graduate student level. His presentation is aimed at the applications of the theory to classical algebra and analysis; in particular, the chapter on contraction mappings shows how it provides proof of many of the existence theorems in classical analysis.
In this book, Professor Copson gives a rigorous account of the theory of partial differential equations of the first order and of linear partial differential equations of the second order, using the methods of classical analysis. In spite of the advent of computers and the applications of the methods of functional analysis to the theory of partial differential equations, the classical theory retains its relevance in several important respects. Many branches of classical analysing have their origins in the rigourous discussion of problems in applies mathematics and theoretical physics, and the classical treatment of the theory of partial differential equations still provides the best method of treating many physical problems. A knowledge of the classical theory is essential for pure mathematics who intend to undertake research in this field, whatever approach they ultimately adopt. The numerical analyst needs a knowledge of classical theory in order to decide whether a problem has a unique solution or not.
Certain functions, capable of expansion only as a divergent series, may nevertheless be calculated with great accuracy by taking the sum of a suitable number of terms. The theory of such asymptotic expansions is of great importance in many branches of pure and applied mathematics and in theoretical physics. Solutions of ordinary differential equations are frequently obtained in the form of a definite integral or contour integral, and this tract is concerned with the asymptotic representation of a function of a real or complex variable defined in this way. After a preliminary account of the properties of asymptotic series, the standard methods of deriving the asymptotic expansion of an integral are explained in detail and illustrated by the expansions of various special functions. These methods include integration by parts, Laplace's approximation, Watson's lemma on Laplace transforms, the method of steepest descents, and the saddle-point method. The last two chapters deal with Airy's integral and uniform asymptotic expansions.
§1. Whittaker has shewn that a general solution of Laplace's Equation
may be put in the form
where f (v, u) denotes an arbitrary function of the two variables u and v; such a representation is valid only in the neighbourhood of a regular point.
The Partial Differential Equations of Physics may be defined as those equations which can be derived from a “least action principle,” that is, as those which are obtained by making a certain integral stationary by the methods of the Calculus of Variations. But, generally speaking, such equations belong to conservative physical systems, and not to those which involve dissipation of energy. In this note it is shewn that a certain class of dissipative equation, of which the best known example is the equation of telegraphy, can be derived from such a calculus of variations problem.
§1. The Lamé Functions of degree n (where n is a positive integer) may be defined as those solutions of the equation
which are polynomials in the elliptic functions sn x, cn x, dn x of real modulus K. Such solutions only exist for certain particular values of the constant a; there are 2n + 1 such values and 2n + 1 corresponding Lamé functions.
One of the many interesting problems discussed by Ramanujan is concerned with the effect of truncating at its maximum term nn/n! the exponential series for en, where n is a positive integer. When n is large, the sum of the first n terms is, roughly speaking, half the sum of the whole series.
A bounded monotonic sequence is convergent. Dr J. M. Whittaker recently suggested to me a generalisation of this result, that, if a bounded sequence {an} of real numbers satisfies the inequality
then it is convergent. This I was able to prove by considering the corresponding difference equation
§ 1. It is well known that, if , the convergence of sn to a limit implies the convergence of tn to the same limit. The converse theorem, that the convergence of tn implies the convergence of sn, is false. Mercer1 proved, however, that if , then both sn and tn tend to l. This theorem has recently been extended in various directions.2 In the present note the case of Abel limits is considered.
Riemann's method of solution of a linear second order partial differential equation of hyperbolic type was introduced in his memoir on sound waves. It has been used by Darboux in discussing the equation
can be expanded as an inverse factorial series. This note furnishes a new and much simpler proof of his result, based on a formula which is an analogue of the Binomial Theorem for factorials.
This formula is that, if we denote by [x]n the ratio
then
where denotes the coefficient of xr in the expansion of (1 + x)m.
is, as is well-known, a general solution of Laplace's equation of degree −1 in (x, y, z). In 1926* I proved that the particular solution r−1Q0 (z/r) cannot be represented in this form whereas the solution r−1Q0 (y/r) can. In the present note I find a very simple expression for the latter solution in the form (1.1), and I deduce from it an apparently new integral formula for Qn (cos θ).
When a perfectly conducting uniform thin circular disc is kept at a potential V0 in an external electrostatic field of potential Φ, electric charge is induced on the surface of the disc; the problem is to find the surface-density σ of this induced charge and its potential V so that the total potential V + Φ has the constant value V0 on the surface of the disc. This problem was first discussed by Green in 1832, and the solution in the case when there is no external field was deduced by Lord Kelvin from the known formula for the gravitational potential of an elliptic homoeoid. The problem is still of interest since similar ideas occur in the theory of diffraction by a circular disc and in the theory of the generation of sound waves by a vibrating disc when the wave-length is large compared with the radius of the disc.
Let be a linear differential expression involving n independent variables xi the coefficients AikBi, and C being functions of the independent variables but not involving the dependent variable u. Associated with F(u) is the adjoint expression
In a lecture at the Oslo Congress in 1936, Marcel Riesz introduced an important generalisation of the Riemann-Liouville integral of fractional order. Riesz's integral Iaf of order α is a multiple integral in m variables which converges uniformly when the real part of αexceeds m —2 and so represents an analytic function of the complex variable α. This integral is important in the theory of the generalised wave equation, for it provides a direct method of solving Cauchy's initial-value problem. The most recent developments show that it is likely to be also of great importance in quantum electrodynamics.