We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Design-by-analogy (DbA) is a powerful method for product innovation design, leveraging multidomain design knowledge to generate new ideas. Previous studies have relied heavily on designers’ experiences to retrieve analogical knowledge from other domains, lacking a structured method to organize and understand multidomain analogical knowledge. This presents a significant challenge in recommending high-quality analogical sources, which needs to be addressed. To tackle these issues, a knowledge graph-assisted DbA approach via structured analogical knowledge retrieval is proposed. First, an improved function-effect-structure ontology model is constructed to extract functions and effects as potential analogical sources, and six semantic matching rules are established to output entity triplets, and the DbA knowledge graph (DbAKG) is developed. Second, based on the knowledge of semantic relationships in DbAKG, the domain distance and similarity between the design target and the analogical sources are introduced to establish an analogical value model, ensuring the novelty and feasibility of analogical sources. After that, with function as the design target, analogical sources transfer strategy is formed to support innovative solution solving, and TRIZ theory is used to solve design conflicts. Finally, a pipeline inspection robot case study is further employed to verify the proposed approach. Additionally, a knowledge graph-assisted analogical design system has been developed to assist in managing multidomain knowledge and the analogical process, facilitate the adoption of innovative design strategies, and assist companies in providing more competitive products to seize the market.
Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) is a key lepidopteran pest affecting maize production across Asia. While its general biology has been well studied, the phenomenon of pupal ring formation remains poorly understood. This study examined the factors influencing pupal ring formation under controlled laboratory conditions. Results showed that pupal rings were formed exclusively when larvae were reared on an artificial diet, with no ring formation observed on corn-stalks. Females exhibited a significantly higher tendency to participate in ring formation than males. Additionally, male participation increased proportionally with the number of rings formed, a pattern not observed in females. The size of the rearing arena significantly influenced ring formation, with smaller arenas (6 cm diameter) promoting more frequent pairing, particularly among females. Temperature also played a significant role: lower participation rates were recorded at 22 °C compared to 25 °C and 28 °C, although the number of rings formed did not differ significantly across temperatures. Developmental stage and sex composition further influenced pairing behaviour; pupal rings formed only among individuals of similar maturity, and male participation was significantly reduced in all-male groups compared to mixed-sex groups. These findings suggest that pupal ring formation in O. furnacalis is modulated by dietary substrate, larval sex, environmental conditions, and developmental synchrony, offering new insights into the behavioural ecology of this pest.
An actively controllable cascaded proton acceleration driven by a separate 0.8 picosecond (ps) laser is demonstrated in proof-of-principle experiments. MeV protons, initially driven by a femtosecond laser, are further accelerated and focused into a dot structure by an electromagnetic pulse (EMP) on the solenoid, which can be tuned into a ring structure by increasing the ps laser energy. An electrodynamics model is carried out to explain the experimental results and show that the dot-structured proton beam is formed when the outer part of the incident proton beam is optimally focused by the EMP force on the solenoid; otherwise, it is overfocused into a ring structure by a larger EMP. Such a separately controlled mechanism allows precise tuning of the proton beam structures for various applications, such as edge-enhanced proton radiography, proton therapy and pre-injection in traditional accelerators.
Double aortic arch is an exceedingly rare congenital vascular anomaly, and its association with anomalous origins of the vertebral arteries is even more uncommon. Enhanced computed tomography revealed a double aortic arch with the left common carotid artery, left vertebral artery, and left subclavian artery originating from the left arch, and the right common carotid artery, right vertebral artery, and right subclavian artery arising from the right arch. To our knowledge, this is the first report of a double aortic arch with six distinct vessels originating from both arches. Enhanced CT should be considered in double aortic arch patients to identify such anomalous origins of branch arteries.
Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a destructive monophagous pest of mulberry, Morus Linnaeus (Moraceae), trees. In order to identify mulberry cultivars resistant to G. pyloalis, 12 cultivars were examined using field and in vitro testing. Field observations indicated that cultivars AlbapC, BombyL, LaeviT, and CathaB had less than 10.0% damage, with no observed damage on the CathaB cultivar. The life table parameters showed that CathaB cultivar had the longest larval and pupal duration (23.2 days in total), the shortest adult period (5.3 days), the lowest rates of both pupation (55.0%) and adult emergence (69.7%), the highest adult mortality (61.7%), the lowest average weight of pupae (30.4 mg), and the lowest daily oviposition (5.0 eggs/female/day). The larval performance of G. pyloalis in the field revealed that CathaB had the lowest larval density. Correlation analyses confirmed that significant correlations exist between all the performance parameters of G. pyloalis for both the observed damage and larval performance. Leaf characterisation of selected cultivars indicated CathaB had significantly higher values of leaf wax, trichome density, soluble glucose, and protein contents compared to MultiQ. This study would be a valuable reference for evaluating pest-resistant cultivars and establishing a theoretical foundation for managing G. pyloalis.
Asian corn borer, Ostrinia furnacalis Guenée (Lepidoptera: Crambidae), is a major pest in corn production, and its management remains a significant challenge. Current control methods, which rely heavily on synthetic chemical pesticides, are environmentally detrimental and unsustainable, necessitating the development of eco-friendly alternatives. This study investigates the potential of the entomopathogenic nematode Steinernema carpocapsae as a biological control agent for O. furnacalis pupae, focusing on its infection efficacy and the factors influencing its performance. We conducted a series of laboratory experiments to evaluate the effects of distance, pupal developmental stage, soil depth, and light conditions on nematode attraction, pupal mortality and sublethal impacts on pupal longevity and oviposition. Results demonstrated that S. carpocapsae exhibited the highest attraction to pupae at a 3 cm distance, with infection declining significantly at greater distances. Younger pupae (<12 h old), were more attractive to nematodes than older pupae, and female pupae were preferred over males. Nematode infection was highest on the head and thorax of pupae, with a significant reduction in infection observed after 24 h. Infection caused 100% mortality in pupae within 2 cm soil depth, though efficacy was reduced under light conditions. Sublethal effects included a significant reduction in the longevity of infected adults and a decrease in the number of eggs laid by infected females compared to controls. These findings underscore the potential of S. carpocapsae as an effective biocontrol agent for sustainable pest management in corn production, offering a viable alternative to chemical pesticides.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
The desert locust (Schistocerca gregaria) is a destructive migratory pest, posing great threat to over 60 countries globally. In the backdrop of climate change, the habitat suitability of desert locusts is poised to undergo alterations. Hence, investigating the shifting dynamics of desert locust habitats holds profound significance in ensuring global agricultural resilience and food security. In this study, we combined the maximum entropy modelling and geographic information system technology to conduct a comprehensive analysis of the impact of climate change on the distribution patterns and habitat adaptability of desert locusts. The results indicate that the suitable areas for desert locusts (0.2976 × 108 km2) are concentrated in northern Africa and southwestern Asia, accounting for 19.97% of the total global land area. Key environmental variables affecting the desert locust distribution include temperature annual range, mean temperature of the coldest quarter, average temperature of February, and precipitation of the driest month. Under the SSP1–2.6 and SSP5–8.5 climate scenarios, potential suitable areas for desert locusts are estimated to increase from 2030 (2021–2040) to 2090 (2081–2100). By 2090, highly suitable areas for SSP1–2.6 and SSP5–8.5 are projected to be 0.0606 × 108 and 0.0891 × 108 km2, respectively, reflecting an expansion of 1.84 and 2.77% compared to existing ones. These research findings provide a theoretical basis for adopting prevention and control strategies for desert locusts.
Silicon (Si), the most abundant mineral element in soil, functions as a beneficial element for plant growth. Higher Si accumulation in the shoots is required for high and stable production of rice, a typical Si-accumulating plant species. During the last two decades, great progresses has been made in the identification of Si transporters involved in uptake, xylem loading and unloading as well as preferential distribution and deposition of Si in rice. In addition to these transporters, simulation by mathematical models revealed several other key factors required for efficient uptake and distribution of Si. The expression of Lsi1, Lsi2 and Lsi3 genes is down-regulated by Si deposition in the shoots rather than in the roots, but the exact mechanisms underlying this down-regulation are still unknown. In this short review, we focus on Si transporters identified in rice and discuss how rice optimizes Si accumulation (“homeostasis”) through regulating Si transporters in response to the fluctuations of this element in the soil solution.
Web3 is a new frontier of internet architecture emphasizing decentralization and user control. This text for MBA students and industry professionals explores key Web3 concepts, starting from foundational principles and moving to advanced topics like blockchain, smart contracts, tokenomics, and DeFi. The book takes a clear, practical approach to demystify the tech behind NFTs and DAOs as well as the complex regulatory landscape. It confronts challenges of blockchain scalability, a barrier to mainstream adoption of this transformative technology, and examines smart contracts and the growing ecosystem leveraging their potential. The book also explains the nuances of tokenomics, a vital element underpinning Web3's new economic model. This book is ideal for readers seeking to stay on top of emerging trends in the digital economy.
Chapter 7 highlights key concepts in Decentralized Finance (DeFi) and compares it to traditional finance. It discusses major DeFi applications such as decentralized exchanges, lending/borrowing platforms, derivatives, prediction markets, and stablecoins. DeFi offers advantages, including open access, transparency, programmability, and composability. It enables peer-to-peer financial transactions without intermediaries, unlocking financial inclusion, efficiency gains, and innovation. However, risks such as smart contract vulnerabilities, price volatility, regulatory uncertainty, and lack of accountability persist. As DeFi matures, enhanced governance, security audits, regulation, and insurance will be vital to address these challenges. DeFi is poised to reshape finance if balanced with prudence. Important metrics to track growth include total value locked, trading volumes, active users, and loans outstanding. Research tools such as Dune Analytics, DeFi Llama, and DeFi Pulse provide data-driven insights. Overall, DeFi represents a profoundly transformative blockchain application, but responsible evolution is key. The chapter compares DeFi to traditional finance and analyzes major applications, benefits, risks, and metrics in this emerging field.
Chapter 1 provides an overview of the concepts and definitions inherent to Web3. It presents a deep exploration into the phenomenon of "Convergence of Convergence," a term coined to denote the convergence of various dimensions within Web3, such as technology, data, user interactions, business models, identity, and organizational structures. The chapter also offers a comparative study of Web3 from different perspectives – tracing its evolution in the Internet era, analyzing its implications for user experience, evaluating its regulatory aspects, and understanding its scalability. Each of these aspects is explored in a detailed, standalone section, allowing readers to comprehend the multifaceted nature of Web3. The overarching aim of this chapter is to foster a comprehensive understanding of Web3, delineating its significance as a major shift in the Internet paradigm and its potential for creating more decentralized, user-empowered digital ecosystems.
Chapter 11 envisions the future potential of Web3 technologies in reshaping the web. It covers key areas such as generative AI, DeFi, mobile apps, cloud infrastructure, and the Metaverse. In DeFi, the focus is on scalability, interoperability, regenerative finance, decentralized identity, and its integration with social networks. The convergence of generative AI and Web3 is examined through case studies and applications, while mobile apps are explored as nodes for consensus algorithms, providing decentralized and secure networks. The impact of Web3 on cloud infrastructure includes decentralized storage, blockchain-based authentication and authorization, decentralized computing resources, and token-based incentives. Lastly, the chapter delves into the Metaverse, discussing decentralized ownership, token economies, identity and privacy considerations, interoperability, and decentralized governance. Through these explorations, the chapter highlights the transformative potential of Web3 in fostering decentralization, inclusivity, and innovation in the digital era.