In this study, the method of large-eddy simulation (LES) is applied to investigate the impact of patches of coarsened riverbed sediments on near-bed hydrodynamics and flow resistance. Six simulations are performed with riverbed coverage ratios of coarser particles (Ac/At, where Ac and At are the riverbed area covered by coarsened sediments and the total riverbed area, respectively) ranging from 0 % to 100 %. By ensuring identical crest heights for all particles, the influence of heterogeneous roughness height is eliminated, allowing for an isolated investigation of heterogeneous permeability effects. Results reveal distinct high- and low-flow streaks above coarsened and uncoarsened sediments, associated with elevated and reduced Reynolds shear stress, respectively. These streaky patterns are attributed to time-averaged secondary flows spanning the entire water depth, that converge toward coarsened sediments and diverge from uncoarsened areas. Elevated Reynolds shear stress, up to 1.9 times the reach-averaged bed shear stress, is observed in the interstitial spaces between coarser particles due to intensified hyporheic exchange at the sediment–water interface. Upwelling and downwelling flows occur upstream and downstream of coarsened sediments particles, respectively, driving dominant ejection and sweep events. At Ac/At = 16 %, ejections and sweeps contribute maximally to Reynold shear stress, increasing by up to 130 % and 110 %, respectively – approximately double their contributions in the uncoarsened case. The study identifies two mechanisms driving increased flow resistance over coarsened riverbeds: water-depth-scale secondary flows and grain-scale hyporheic exchanges. Consequently, the reach-averaged friction factor increases by 29.8 % from Ac/At = 0 % to 64 %, followed by a 15.8 % reduction in the fully coarsened scenario.