We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The imaging of stones in the salivary glands and ducts poses a challenge, even to experienced ultrasound examiners. This study investigated whether the ‘twinkling artefact’, which occurs at internal calcific foci during Doppler ultrasound examinations, is useful for detecting salivary gland stones.
Methods:
In a model test, 20 salivary stones were analysed in vitro, via Doppler ultrasound, with regard to their representability and the triggering of the twinkling artefact. In a follow-up study, 28 patients with sialolithiasis and food-related large salivary gland swellings were examined, using both power and colour Doppler modes, with regard to the twinkling artefact. All ultrasound examinations were performed by an experienced examiner and retrospectively graded by two experienced sonographers.
Results:
All stones could reliably be detected using the twinkling artefact in the model test. Twenty-seven of 28 salivary stones (96 per cent) also showed twinkling in vivo, during patient assessment. The power Doppler mode showed a significantly higher intensity level of twinkling than the colour Doppler mode (p < 0.0001).
Conclusion:
The twinkling artefact is a very reliable sign for the diagnosis of sialolithiasis. Power Doppler is superior to colour Doppler for detection of the twinkling artefact.
A series of LDA measurements and visual observations of confined turbulent vortex flow are described. The experiments were performed with water as the fluid medium in a vortex tube of length-to-diameter ratio L/D = 3.8 for a range of exit diameters De between De/D = 1 and 0.18. The experiments reveal a remarkable change in the vortex structure as De is reduced: from a thick core with an axial-velocity defect in the centre, and even reversed flow, to a thin annular jet-like core with a peak axial velocity more than an order of magnitude greater than the average value and again a central velocity deficit. The corresponding swirl profiles are not remarkable and are well-represented under all conditions by the solution of Burgers (1948), albeit with a velocity maximum which is strongly dependent upon De.
In this paper we find conditions which guarantee that a given flow $\Phi$ on a compact metric space X admits a Lyapunov 1-form $\omega$ lying in a prescribed Čech cohomology class $\xi\in\check H^1(X;\mathbb{R})$. These conditions are formulated in terms of the restriction of $\xi$ to the chain recurrent set of $\Phi$. The result of the paper may be viewed as a generalization of a well-known theorem by Conley about the existence of Lyapunov functions.
We studied on a nanometer scale the tribological properties of thin silicon carbide films on Si(100) wafers and stainless steel. The coatings were fabricated from a sintered SiC target by pulsed ArF laser deposition at substrate temperatures between 20 °C and 1000 °C. Amorphous films resulted at low deposition temperatures while nanocrystalline structures developed at high deposition temperatures. An atomic force/lateral force microscope was employed to characterize the film topography and the friction behavior. The microhardness was determined from measurements utilizing a depth-sensing nanoindentation instrument. The SiC films on Si(100) exhibit a smooth surface with an average roughness Ra of a few nanometer, the amorphous films being even an order of magnitude smoother. No appreciable differences were found in microhardness and friction coefficient between amorphous and nanocrystalline films. On stainless steel, amorphous SiC coatings were obtained for deposition temperatures up to 500 °C. Their surface relief portrayed the grain boundaries of the underlying steel substrate, reflecting the ballistic nature of the deposition process. No stoichiometric films were obtained above 500 °C as the silicon from the growing film quickly dissolved in the steel substrate.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.