We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: Infantile spasms (IS) is an epileptic encephalopathy, characterized by spasms, hypsarrhythmia, and developmental regression. This is a retrospective case series of children with IS who underwent epilepsy surgery at The Hospital for Sick Children (HSC) in Toronto, Canada. Methods: The records of 223 patients seen in the IS clinic were reviewed. Results: Nineteen patients met inclusion criteria. The etiology of IS was encephalomalacia in six patients (32%), malformations of cortical development in 11 patients (58%), atypical hypoglycaemic injury in one patient (5%), and partial hemimegalencephaly in one patient (5%). Nine patients (47%) underwent hemispherectomy and 10 patients (53%) underwent lobectomy/lesionectomy. Three patients (16%) underwent a second epilepsy surgery. Fifteen patients (79%) were considered ILAE Seizure Outcome Class 1 (completely seizure free; no auras). The percentage of patients who were ILAE Class 1 at most recent follow-up decreased with increasing duration of epilepsy prior to surgery. Developmental outcome was improved in 14/19 (74%) and stable in 5/19 (26%) patients. Conclusions: Our study found excellent seizure freedom rates and improved developmental outcomes following epilepsy surgery in patients with a history of IS with a structural lesion detected on MRI brain.
We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.
GLEAM, the GaLactic and Extragalactic All-sky MWA survey, is a survey of the entire radio sky south of declination + 25° at frequencies between 72 and 231 MHz, made with the MWA using a drift scan method that makes efficient use of the MWA’s very large field-of-view. We present the observation details, imaging strategies, and theoretical sensitivity for GLEAM. The survey ran for two years, the first year using 40-kHz frequency resolution and 0.5-s time resolution; the second year using 10-kHz frequency resolution and 2 s time resolution. The resulting image resolution and sensitivity depends on observing frequency, sky pointing, and image weighting scheme. At 154 MHz, the image resolution is approximately 2.5 × 2.2/cos (δ + 26.7°) arcmin with sensitivity to structures up to ~ 10° in angular size. We provide tables to calculate the expected thermal noise for GLEAM mosaics depending on pointing and frequency and discuss limitations to achieving theoretical noise in Stokes I images. We discuss challenges, and their solutions, that arise for GLEAM including ionospheric effects on source positions and linearly polarised emission, and the instrumental polarisation effects inherent to the MWA’s primary beam.
The Murchison Widefield Array is a Square Kilometre Array Precursor. The telescope is located at the Murchison Radio–astronomy Observatory in Western Australia. The MWA consists of 4 096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays, and others by Graphics Processing Units housed in general purpose rack mounted servers. The correlation capability required is approximately 8 tera floating point operations per second. The MWA has commenced operations and the correlator is generating 8.3 TB day−1 of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper, we outline the correlator design, signal path, and processing elements and present the data format for the internal and external interfaces.
The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.
The Spitzer Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally-Stripped, Low-Metallicity Small Magellanic Cloud” (SAGE-SMC; Gordon et al. 2011) allows a global study of star formation in the SMC at high enough resolution to resolve individual cores and protostars at a range of mid-IR wavelengths. Using the SAGE-SMC IRAC (3.6 - 8.0 μm) and MIPS (24 and 70 μm) catalogs and images combined with the near-IR and optical data, we identified a population of ∼1100 intermediate- to high-mass Young Stellar Objects (YSOs) in the SMC (3 × more than previously known). We investigate the properties of the YSOs and how they relate to the galaxy's structure and gas and dust distribution.
Flying insects and robots that mimic them flap and rotate (or ‘pitch’) their wings with large angular amplitudes. The reciprocating nature of flapping requires rotation of the wing at the end of each stroke. Insects or flapping-wing robots could achieve this by directly exerting moments about the axis of rotation using auxiliary muscles or actuators. However, completely passive rotational dynamics might be preferred for efficiency purposes, or, in the case of a robot, decreased mechanical complexity and reduced system mass. Herein, the detailed equations of motion are derived for wing rotational dynamics, and a blade-element model is used to supply aerodynamic force and moment estimates. Passive-rotation flapping experiments with insect-scale mechanically driven artificial wings are conducted to simultaneously measure aerodynamic forces and three-degree-of-freedom kinematics (flapping, rotation and out-of-plane deviation), allowing a detailed evaluation of the blade-element model and the derived equations of motion. Variations in flapping kinematics, wing-beat frequency, stroke amplitude and torsional compliance are made to test the generality of the model. All experiments showed strong agreement with predicted forces and kinematics, without variation or fitting of model parameters.
Streptococcus pneumoniae is a common cause of community-acquired pneumonia (CAP) but existing diagnostic tools have limited sensitivity and specificity. We enrolled adults undergoing chest radiography at three Indian Health Service clinics in the Southwestern United States and collected acute and convalescent serum for measurement of PsaA and PspA titres and urine for pneumococcal antigen detection. Blood and sputum cultures were obtained at the discretion of treating physicians. We compared findings in clinical and radiographic CAP patients to those in controls without CAP. Urine antigen testing showed the largest differential between CAP patients and controls (clinical CAP 13%, radiographic CAP 17%, control groups 2%). Serological results were mixed, with significant differences between CAP patients and controls for some, but not all changes in titre. Based on urine antigen and blood culture results, we estimated that 11% of clinical and 15% of radiographic CAP cases were due to pneumococcus in this population.
Few population-based studies have investigated the epidemiology of adult community-acquired pneumonia (CAP). We aimed to determine the incidence of CAP in a population at high-risk for pneumococcal disease and to evaluate a standardized method for interpreting chest radiographs adapted from the World Health Organization paediatric chest radiograph interpretation guidelines. We reviewed radiology records at the two healthcare facilities serving the White Mountain Apache tribe to identify possible pneumonia cases ⩾40 years of age. We categorized patients with clinical criteria and a physician diagnosis of pneumonia as clinical CAP and those with clinical criteria and an acute infiltrate as radiographic CAP. We identified 100 (27/1000 person-years) and 60 (16/1000 person-years) episodes of clinical and radiographic CAP, respectively. The incidence of CAP increased with age. Both radiographic and clinical CAP were serious illnesses with more than half of patients hospitalized. Our case definitions and methods may be useful for comparing data across studies and conducting vaccine trials.
Shark cage diving is both popular and controversial, with proponents citing educational value and non-extractive use of natural resources and opponents raising concerns about public safety and ecological impacts. Logbook data collected 2004–2008 from two Oahu (Hawaii) shark cage diving operations were analysed to determine whether such voluntary records provide useful insights into shark ecology or ecotourism impacts. Operators correctly identified common shark species and documented gross seasonal cycles and long-term trends in abundance of Galapagos (Carcharhinus galapagensis), sandbar (Carcharhinus plumbeus) and tiger sharks (Galeorcerdo cuvier). Annual cycles in shark abundance may indicate seasonal migrations, whereas long-term trends suggest gradual exclusion of smaller sandbar sharks from cage diving sites. Numerically dominant (> 98%) Galapagos and sandbar sharks are rarely implicated in attacks on humans. Negligible impact on public safety is supported by other factors such as: (1) remoteness of the sites, (2) conditioning stimuli that are specific to the tour operations and different from inshore recreational stimuli and (3) no increase in shark attacks on the north coast of Oahu since cage diving started. Tracking studies are required to validate logbook data and to determine whether sharks associated with offshore cage diving travel into inshore areas used for in-water recreation.
Early results from the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the tidally-disrupted, low-metallicity Small Magellanic Cloud) Spitzer legacy program are presented. These early results concentrate on the SAGE-SMC MIPS observations of the SMC Tail region. This region is the high H i column density portion of the Magellanic Bridge adjacent to the SMC Wing. We detect infrared dust emission and measure the gas-to-dust ratio in the SMC Tail and find it similar to that of the SMC Body. In addition, we find two embedded cluster regions that are resolved into multiple sources at all MIPS wavelengths.
OH(1720 MHz) and methanol masers are now recognized to be excellent probes of the interactions of supernova remnants with molecular clouds and tracers of massive star formation, respectively. To better understand the nature of star formation activity in the central region of the Galaxy, we have used these two classes of masers combined with the IRAC and MIPS data to study prominent sites of ongoing star formation in the nuclear disk. The nuclear disk is characterized by massive GMCs with elevated gas temperatures, compared to their dust temperatures. We note an association between methanol masers and a class of mid-infrared “green sources”. These highly embedded YSOs show enhanced 4.5μm emission due to excited molecular lines.
The distribution of methanol masers and supernova remnants suggest a low efficiency of star formation (with the exception of Sgr B2), which we believe is due to an enhanced flux of cosmic ray electrons impacting molecular clouds in the nuclear disk. We also highlight the importance of cosmic rays in their ability to heat molecular clouds, and thus increase the gas temperature.
We are performing a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC), using the IRAC and MIPS instruments on board the Spitzer Space Telescope (Spitzer). Meixner et al. (2006) provides an overview of the project and initial results and their Table 1 (repeated here) outlines the survey's salient characteristics. In this project, we are surveying the agents of a galaxys evolution (SAGE), i.e. the interstellar medium (ISM) and stars, and their interaction on the galaxy wide scale of the LMC. Spitzer IRAC and MIPS images provide key insights into the life cycle of matter in a galaxy because the infrared emission from dust grains is an effective tracer of the ISM, star formation, and stellar mass-loss. Three key science goals determined the coverage and depth of the survey. The detection of diffuse ISM with column densities > 1.2×1021 H cm−2 permits detailed studies of dust processes in the ISM. SAGE's point source sensitivity enables a complete census of newly formed stars with masses >3 M⊙ that will determine the current star formation rate in the LMC. SAGE's detection of evolved stars with mass loss rates > 10−8 M⊙ yr−1 will quantify the rate at which evolved stars inject mass into the ISM of the LMC (Blum et al. 2006). The SAGE data are nonproprietary. The preliminary SAGE catalog of epoch 1 photometry, prepared by the SAGE Team and released to the public on January 3, 2006, contains over 4 million IRAC sources, band merged with 2MASS photometry and over 60,000 MIPS 24 micron sources. Preliminary estimates indicate that foreground Milky Way stars and background galaxies may comprise as much as 18% and 12%, respectively, of these catalogs. To learn more about the SAGE project: http://sage.stsci.edu/.
Legionnaires' disease (LD) is caused by Legionella species, most of which live in water. The Mid-Atlantic region experienced a sharp rise in LD in 2003 coinciding with a period of record-breaking rainfall. To investigate a possible relationship, we analysed the association between monthly legionellosis incidence and monthly rainfall totals from January 1990 to December 2003 in five Mid-Atlantic states. Using negative binomial model a 1-cm increase in rainfall was associated with a 2·6% (RR 1·026, 95% CI 1·012–1·040) increase in legionellosis incidence. The average monthly rainfall from May to September 1990–2002 was 10·4 cm compared to 15·7 cm from May to September 2003. This change in rainfall corresponds to an increased risk for legionellosis of approximately 14·6% (RR 1·146, 95% CI 1·067–1·231). Legionellosis incidence increased during periods of increased rainfall; identification of mechanisms that increase exposure and transmission of Legionella during rainfall might lead to opportunities for prevention.
The epidemic of type 2 diabetes in the United States prompted us to explore the association between diabetes and tuberculosis (TB) on the South Texas–Mexico border, in a large population of mostly non-hospitalized TB patients. We examined 6 years of retrospective data from all TB patients (n=5049) in South Texas and northeastern Mexico and found diabetes self-reported by 27·8% of Texan and 17·8% of Mexican TB patients, significantly exceeding national self-reported diabetes rates for both countries. Diabetes comorbidity substantially exceeded that of HIV/AIDS. Patients with TB and diabetes were older, more likely to have haemoptysis, pulmonary cavitations, be smear positive at diagnosis, and remain positive at the end of the first (Texas) or second (Mexico) month of treatment. The impact of type 2 diabetes on TB is underappreciated, and in the light of its epidemic status in many countries, it should be actively considered by TB control programmes, particularly in older patients.
2-D and 3-D radiation transfer models of forming stars generally produce bluer 1-10 μm colors than 1-D models of the same evolutionary state and envelope mass. Therefore, 1-D models of the shortwave radiation will generally estimate a lower envelope mass and later evolutionary state than multidimensional models. 1-D models are probably reasonable for very young sources, or longwave analysis ($\lambda >100 \mu$m). In our 3-D models of high-mass stars in clumpy molecular clouds, we find no correlation between the depth of the 10 μm silicate feature and the longwave ($> 100 \mu$m) SED (which sets the envelope mass), even when the average optical extinction of the envelope is ${> }100$ magnitudes. This is in agreement with the observations of Faison et al. (1998) of several UltraCompact HII (UCHII) regions, suggesting that many of these sources are more evolved than embedded protostars.
We have calculated a large grid of 2-D models and find substantial overlap between different evolutionary states in the mid-IR color-color diagrams. We have developed a model fitter to work in conjunction with the grid to analyze large datasets. This grid and fitter will be expanded and tested in 2005 and released to the public in 2006.
We describe an effort to reduce transmission of a multidrug-resistant Streptococcus pneumoniae (MDRSP) in a long-term-care facility (LTCF).
Design:
Longitudinal cross-sectional study.
Setting:
An LTCF in New York City with ongoing disease due to an MDRSP strain among residents with AIDS since a 1995 outbreak. The MDRSP outbreak strain was susceptible to vancomycin but not to other antimicrobials tested, including fluoroquinolones.
Participants:
Residents and staff members of the LTCF during 1999 through 2001.
Intervention:
Implementing standard infection control measures, and developing and implementing "enhanced standard" infection control measures, modified respiratory droplet prevention measures to reduce inter-resident transmission.
Results:
Before the intervention, nasopharyngeal carriage of the MDRSP outbreak strain was detected in residents with AIDS and residents with tracheostomies who were not dependent on mechanical ventilation. The prevalence of nasopharyngeal carriage of the MDRSP outbreak strain was 7.8% among residents who had AIDS and 14.6% among residents with tracheostomies. After training sessions on standard and enhanced standard infection control measures, the staff appeared to have good knowledge and practice of the infection control measures. After the intervention, new transmission among residents with tracheostomies was prevented; however, these residents were prone to persistent tracheal carriage and needed ongoing enhanced standard infection control measures. Ongoing transmission among residents with AIDS, a socially active group, was documented, although fewer cases of disease due to the outbreak strain occurred.
Conclusions:
Infection control contributed to less transmission of MDRSP in the LTCF. Additional strategies are needed to reduce transmission and carriage among certain resident populations.
With new 6 cm observations we confirm the self-similar expansion of SN 1993J previously discovered at 3.6 cm and estimate the expansion deceleration parameter. The results are inconsistent with the existence of a constant pre-explosion stellar wind but otherwise confirm the standard radio supernova model. The first map at 13 cm showing shell structure is also presented.