We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range $0.4\lt z\lt1.0$, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg$^2$ of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at $0.4\lt z\lt1$. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth $\tau\gt1$, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5–20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg$^2$ ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
We have conducted a widefield, wideband, snapshot survey using the Australian SKA Pathfinder (ASKAP) referred to as the Rapid ASKAP Continuum Survey (RACS). RACS covers $\approx 90$% of the sky, with multiple observing epochs in three frequency bands sampling the ASKAP frequency range of 700–1 800 MHz. This paper describes the third major epoch at 1 655.5 MHz, RACS-high, and the subsequent imaging and catalogue data release. The RACS-high observations at 1 655.5 MHz are otherwise similar to the previously released RACS-mid (at 1 367.5 MHz) and were calibrated and imaged with minimal changes. From the 1 493 images covering the sky up to declination $\approx +48^\circ$, we present a catalogue of 2 677 509 radio sources. The catalogue is constructed from images with a median root-mean-square noise of $\approx 195$$\unicode{x03BC}$Jy PSF$^{-1}$ (point-spread function) and a median angular resolution of $11{\stackrel{\prime\prime}{\raise-0pt\hbox{.}}}8 \times 8{\stackrel{\prime\prime}{\raise-0pt\hbox{.}}}1$. The overall reliability of the catalogue is estimated to be 99.18%, and we find a decrease in reliability as angular resolution improves. We estimate the brightness scale to be accurate to 10%, and the astrometric accuracy to be within $\approx 0{\stackrel{\prime\prime}{\raise-0pt\hbox{.}}}6$ in right ascension and $\approx 0{\stackrel{\prime\prime}{\raise-0pt\hbox{.}}}7$ in declination after correction of a systematic declination-dependent offset. All data products from RACS-high, including calibrated visibility datasets, images from individual observations, full-sensitivity mosaics, and the all-sky catalogue are available at the CSIRO ASKAP Science Data Archive.
Motor neuron disease (MND) is a progressive, fatal, neurodegenerative condition that affects motor neurons in the brain and spinal cord, resulting in loss of the ability to move, speak, swallow and breathe. Acceptance and commitment therapy (ACT) is an acceptance-based behavioural therapy that may be particularly beneficial for people living with MND (plwMND). This qualitative study aimed to explore plwMND’s experiences of receiving adapted ACT, tailored to their specific needs, and therapists’ experiences of delivering it.
Method:
Semi-structured qualitative interviews were conducted with plwMND who had received up to eight 1:1 sessions of adapted ACT and therapists who had delivered it within an uncontrolled feasibility study. Interviews explored experiences of ACT and how it could be optimised for plwMND. Interviews were audio recorded, transcribed and analysed using framework analysis.
Results:
Participants were 14 plwMND and 11 therapists. Data were coded into four over-arching themes: (i) an appropriate tool to navigate the disease course; (ii) the value of therapy outweighing the challenges; (iii) relevance to the individual; and (iv) involving others. These themes highlighted that ACT was perceived to be acceptable by plwMND and therapists, and many participants reported or anticipated beneficial outcomes in the future, despite some therapeutic challenges. They also highlighted how individual factors can influence experiences of ACT, and the potential benefit of involving others in therapy.
Conclusions:
Qualitative data supported the acceptability of ACT for plwMND. Future research and clinical practice should address expectations and personal relevance of ACT to optimise its delivery to plwMND.
Key learning aims
(1) To understand the views of people living with motor neuron disease (plwMND) and therapists on acceptance and commitment therapy (ACT) for people living with this condition.
(2) To understand the facilitators of and barriers to ACT for plwMND.
(3) To learn whether ACT that has been tailored to meet the specific needs of plwMND needs to be further adapted to potentially increase its acceptability to this population.
The Organisation for Economic and Cultural Development (OECD) works with countries worldwide to implement testing in the areas of science, mathematics and reading through the Programme for International Student Assessment (PISA) every three years, and this process is recognised to influence education systems through areas such as curriculum. Over the past decade, the OECD increasingly has acknowledged the need to include a greater emphasis on environmental issues, including developing student competencies specifically in this area. For the 2025 PISA round, we were invited as environmental science education experts to contribute to the Science Framework, which underpins the science assessment. This paper explains how we responded to that invitation, including foregrounding the urgent need to understand the competencies of 15 year-olds to address critical socio-ecological challenges such as climate change. We argue that this provides environmental education practitioners and scholars with a powerful opportunity to gain world-scale data for research and advocacy, which could enhance the visibility and leverage for our field in curriculum, whilst also recognising the political process within which we were engaged.
Major Depressive Disorder (MDD) is a complex mental health condition characterized by a wide spectrum of symptoms. According to the Diagnostic Statistical Manual 5 (DSM-5) criteria, patients can present with up to 1,497 different symptom combinations, yet all receive the same MDD diagnosis. This diversity in symptom presentation poses a significant challenge to understanding the disorder in the wider population. Subtyping offers a way to unpick this phenotypic diversity and enable improved characterization of the disorder. According to reviews, MDD subtyping work to date has lacked consistency in results due to inadequate statistics, non-transparent reporting, or inappropriate sample choice. By addressing these limitations, the current study aims to extend past phenotypic subtyping studies in MDD.
Objectives
(1) To investigate phenotypic subtypes at baseline in a sample of people with MDD;
(2) To determine if subtypes are consistent between baseline 6- and 12-month follow-ups; and
(3) To examine how participants move between subtypes over time.
Methods
This was a secondary analysis of a one-year longitudinal observational cohort study. We collected data from individuals with a history of recurrent MDD in the United Kingdom, the Netherlands and Spain (N=619). The presence or absence of symptoms was tracked at three-month intervals through the Inventory of Depressive Symptomatology: Self-Report (IDS-SR) assessment. We used latent class and three-step latent transition analysis to identify subtypes at baseline, determined their consistency at 6- and 12-month follow-ups, and examined participants’ transitions over time.
Results
We identified a 4-class solution based on model fit and interpretability, including (Class 1) severe with appetite increase, (Class 2), severe with appetite decrease, (Class 3) moderate, and (Class 4) low severity. The classes mainly differed in terms of severity (the varying likelihood of symptom endorsement) and, for the two more severe classes, the type of neurovegetative symptoms reported (Figure 1). The four classes were stable over time (measurement invariant) and participants tended to remain in the same class over baseline and follow-up (Figure 2).
Image:
Image 2:
Conclusions
We identified four stable subtypes of depression, with individuals most likely to remain in their same class over 1-year follow-up. This suggests a chronic nature of depression, with (for example) individuals in severe classes more likely to remain in the same class throughout follow-up. Despite the vast heterogeneous symptom combinations possible in MDD, our results emphasize differences across severity rather than symptom type. This raises questions about the meaningfulness of these subtypes beyond established measures of depression severity. Implications of these findings and recommendations for future research are made.
Disclosure of Interest
C. Oetzmann Grant / Research support from: C.O. is supported by the UK Medical Research Council (MR/N013700/1) and King’s College London member of the MRC Doctoral Training Partnership in Biomedical Sciences., N. Cummins: None Declared, F. Lamers: None Declared, F. Matcham: None Declared, K. White: None Declared, J. Haro: None Declared, S. Siddi: None Declared, S. Vairavan Employee of: S.V is an employee of Janssen Research & Development, LLC and hold company stocks/stock options., B. Penninx : None Declared, V. Narayan: None Declared, M. Hotopf Grant / Research support from: M.H. is the principal investigator of the RADAR-CNS programme, a precompetitive public–private partnership funded by the Innovative Medicines Initiative and the European Federation of Pharmaceutical Industries and Associations. The programme received support from Janssen, Biogen, MSD, UCB and Lundbeck., E. Carr: None Declared
The diffusion of water in Li-montmorillonite was studied by incoherent quasielastic neutron scattering. Experiments were carried out on sedimented samples equilibrated at relative humidities of 32%, 58%, and 98%, corresponding approximately to 1, 2, and 3 molecular layers of water in the clay. At all three humidities, although the mobility of the water molecules is less than in bulk water, all water molecules in the system undergo translational diffusion, at least over short distances (>5 Å), with correlation times shorter than 5 × 10−11 sec.
Various models of molecular motion have been used to account for the exact shape of the scattering. The only completely successful model is one where a water molecule undergoes jump-translational diffusion and rotational diffusion. The mean square jump length is 10–15 Å2 with a residence time between jumps of 4–2 × 10−11 sec. The translational diffusion coefficient increases with humidity, having values of 4, 7, and 10 × 10−10 m2/sec for the three humidities. These values can be combined with values previously obtained by tracer measurements to give an estimate of 0.75–0.8 for the tortuosity factor. Although the samples are anisotropic, there is no clear evidence that the diffusion of water over distances 5–20 Å is anisotropic. An upper limit of 3 can be deduced for the rate of diffusion parallel to the direction perpendicular to the platelets.
The use of neutron diffraction to determine some of the structural properties of montmorillonite-water systems at low water concentrations is described. The samples were prepared by compression or suction to give clay samples with between one and three molecular layers of water between the plates.
About 10% of the platelets in the clay are randomly oriented. The remainder are partially oriented in the plane of the sample, with an angular spread of 40° about the mean orientation. It is suggested that these oriented domains are formed from the larger platelets present in the system. The Bragg diffraction pattern is better explained by a disordered lattice model rather than by a mixture model with small particles having a well-defined lattice spacing. We have fitted both the intensities of (00l) reflections and the shape of the (001) reflection quantitatively to a model which allows for a Gaussian spread of platelet spacing about a mean value. The half width of the spread is about 10% of the lattice spacing.
No significant structural differences are found between Li, Na, K, and Cs montmorillonites. The method of preparation has no effect on the structural properties of the large platelet particles but does affect the randomly oriented fraction. The lattice spacing of the latter appears to be better defined for samples prepared by compression.
Experiments on the variation of lattice spacing with humidity indicate that the structural model we have used is adequate except at humidities where the system is changing over from one to two, or two to three water layers.
We present radio observations of the galaxy cluster Abell S1136 at 888 MHz, using the Australian Square Kilometre Array Pathfinder radio telescope, as part of the Evolutionary Map of the Universe Early Science program. We compare these findings with data from the Murchison Widefield Array, XMM-Newton, the Wide-field Infrared Survey Explorer, the Digitised Sky Survey, and the Australia Telescope Compact Array. Our analysis shows the X-ray and radio emission in Abell S1136 are closely aligned and centered on the Brightest Cluster Galaxy, while the X-ray temperature profile shows a relaxed cluster with no evidence of a cool core. We find that the diffuse radio emission in the centre of the cluster shows more structure than seen in previous low-resolution observations of this source, which appeared formerly as an amorphous radio blob, similar in appearance to a radio halo; our observations show the diffuse emission in the Abell S1136 galaxy cluster contains three narrow filamentary structures visible at 888 MHz, between $\sim$80 and 140 kpc in length; however, the properties of the diffuse emission do not fully match that of a radio (mini-)halo or (fossil) tailed radio source.
Commentaries on the target article offer diverse perspectives on integrative experiment design. Our responses engage three themes: (1) Disputes of our characterization of the problem, (2) skepticism toward our proposed solution, and (3) endorsement of the solution, with accompanying discussions of its implementation in existing work and its potential for other domains. Collectively, the commentaries enhance our confidence in the promise and viability of integrative experiment design, while highlighting important considerations about how it is used.
The Australian SKA Pathfinder (ASKAP) has surveyed the sky at multiple frequencies as part of the Rapid ASKAP Continuum Survey (RACS). The first two RACS observing epochs, at 887.5 (RACS-low) and 1 367.5 (RACS-mid) MHz, have been released (McConnell, et al. 2020, PASA, 37, e048; Duchesne, et al. 2023, PASA, 40, e034). A catalogue of radio sources from RACS-low has also been released, covering the sky south of declination $+30^{\circ}$ (Hale, et al., 2021, PASA, 38, e058). With this paper, we describe and release the first set of catalogues from RACS-mid, covering the sky below declination $+49^{\circ}$. The catalogues are created in a similar manner to the RACS-low catalogue, and we discuss this process and highlight additional changes. The general purpose primary catalogue covering 36 200 deg$^2$ features a variable angular resolution to maximise sensitivity and sky coverage across the catalogued area, with a median angular resolution of $11.2^{\prime\prime} \times 9.3^{\prime\prime}$. The primary catalogue comprises 3 105 668 radio sources, including those in the Galactic Plane (2 861 923 excluding Galactic latitudes of $|b|<5^{\circ}$), and we estimate the catalogue to be 95% complete for sources above 2 mJy. With the primary catalogue, we also provide two auxiliary catalogues. The first is a fixed-resolution, 25-arcsec catalogue approximately matching the sky coverage of the RACS-low catalogue. This 25-arcsec catalogue is constructed identically to the primary catalogue, except images are convolved to a less-sensitive 25-arcsec angular resolution. The second auxiliary catalogue is designed for time-domain science and is the concatenation of source lists from the original RACS-mid images with no additional convolution, mosaicking, or de-duplication of source entries to avoid losing time-variable signals. All three RACS-mid catalogues, and all RACS data products, are available through the CSIRO ASKAP Science Data Archive (https://research.csiro.au/casda/).
The Australian SKA Pathfinder (ASKAP) radio telescope has carried out a survey of the entire Southern Sky at 887.5 MHz. The wide area, high angular resolution, and broad bandwidth provided by the low-band Rapid ASKAP Continuum Survey (RACS-low) allow the production of a next-generation rotation measure (RM) grid across the entire Southern Sky. Here we introduce this project as Spectral and Polarisation in Cutouts of Extragalactic sources from RACS (SPICE-RACS). In our first data release, we image 30 RACS-low fields in Stokes I, Q, U at 25$^{\prime\prime}$ angular resolution, across 744–1032 MHz with 1 MHz spectral resolution. Using a bespoke, highly parallelised, software pipeline we are able to rapidly process wide-area spectro-polarimetric ASKAP observations. Notably, we use ‘postage stamp’ cutouts to assess the polarisation properties of 105912 radio components detected in total intensity. We find that our Stokes Q and U images have an rms noise of $\sim$80 $\unicode{x03BC}$Jy PSF$^{-1}$, and our correction for instrumental polarisation leakage allows us to characterise components with $\gtrsim$1% polarisation fraction over most of the field of view. We produce a broadband polarised radio component catalogue that contains 5818 RM measurements over an area of $\sim$1300 deg$^{2}$ with an average error in RM of $1.6^{+1.1}_{-1.0}$ rad m$^{-2}$, and an average linear polarisation fraction $3.4^{+3.0}_{-1.6}$ %. We determine this subset of components using the conditions that the polarised signal-to-noise ratio is $>$8, the polarisation fraction is above our estimated polarised leakage, and the Stokes I spectrum has a reliable model. Our catalogue provides an areal density of $4\pm2$ RMs deg$^{-2}$; an increase of $\sim$4 times over the previous state-of-the-art (Taylor, Stil, Sunstrum 2009, ApJ, 702, 1230). Meaning that, having used just 3% of the RACS-low sky area, we have produced the 3rd largest RM catalogue to date. This catalogue has broad applications for studying astrophysical magnetic fields; notably revealing remarkable structure in the Galactic RM sky. We will explore this Galactic structure in a follow-up paper. We will also apply the techniques described here to produce an all-Southern-sky RM catalogue from RACS observations. Finally, we make our catalogue, spectra, images, and processing pipeline publicly available.
The Australian SKA Pathfinder (ASKAP) is being used to undertake a campaign to rapidly survey the sky in three frequency bands across its operational spectral range. The first pass of the Rapid ASKAP Continuum Survey (RACS) at 887.5 MHz in the low band has already been completed, with images, visibility datasets, and catalogues made available to the wider astronomical community through the CSIRO ASKAP Science Data Archive (CASDA). This work presents details of the second observing pass in the mid band at 1367.5 MHz, RACS-mid, and associated data release comprising images and visibility datasets covering the whole sky south of $\delta_{\text{J2000}}=+49^\circ$. This data release incorporates selective peeling to reduce artefacts around bright sources, as well as accurately modelled primary beam responses. The Stokes I images reach a median noise of 198 $\mu$Jy PSF$^{-1}$ with a declination-dependent angular resolution of 8.1–47.5 arcsec that fills a niche in the existing ecosystem of large-area astronomical surveys. We also supply Stokes V images after application of a widefield leakage correction, with a median noise of 165 $\mu$Jy PSF$^{-1}$. We find the residual leakage of Stokes I into V to be $\lesssim 0.9$–$2.4$% over the survey. This initial RACS-mid data release will be complemented by a future release comprising catalogues of the survey region. As with other RACS data releases, data products from this release will be made available through CASDA.
Alterations in heart rate (HR) may provide new information about physiological signatures of depression severity. This 2-year study in individuals with a history of recurrent major depressive disorder (MDD) explored the intra-individual variations in HR parameters and their relationship with depression severity.
Methods
Data from 510 participants (Number of observations of the HR parameters = 6666) were collected from three centres in the Netherlands, Spain, and the UK, as a part of the remote assessment of disease and relapse-MDD study. We analysed the relationship between depression severity, assessed every 2 weeks with the Patient Health Questionnaire-8, with HR parameters in the week before the assessment, such as HR features during all day, resting periods during the day and at night, and activity periods during the day evaluated with a wrist-worn Fitbit device. Linear mixed models were used with random intercepts for participants and countries. Covariates included in the models were age, sex, BMI, smoking and alcohol consumption, antidepressant use and co-morbidities with other medical health conditions.
Results
Decreases in HR variation during resting periods during the day were related with an increased severity of depression both in univariate and multivariate analyses. Mean HR during resting at night was higher in participants with more severe depressive symptoms.
Conclusions
Our findings demonstrate that alterations in resting HR during all day and night are associated with depression severity. These findings may provide an early warning of worsening depression symptoms which could allow clinicians to take responsive treatment measures promptly.
The dominant paradigm of experiments in the social and behavioral sciences views an experiment as a test of a theory, where the theory is assumed to generalize beyond the experiment's specific conditions. According to this view, which Alan Newell once characterized as “playing twenty questions with nature,” theory is advanced one experiment at a time, and the integration of disparate findings is assumed to happen via the scientific publishing process. In this article, we argue that the process of integration is at best inefficient, and at worst it does not, in fact, occur. We further show that the challenge of integration cannot be adequately addressed by recently proposed reforms that focus on the reliability and replicability of individual findings, nor simply by conducting more or larger experiments. Rather, the problem arises from the imprecise nature of social and behavioral theories and, consequently, a lack of commensurability across experiments conducted under different conditions. Therefore, researchers must fundamentally rethink how they design experiments and how the experiments relate to theory. We specifically describe an alternative framework, integrative experiment design, which intrinsically promotes commensurability and continuous integration of knowledge. In this paradigm, researchers explicitly map the design space of possible experiments associated with a given research question, embracing many potentially relevant theories rather than focusing on just one. Researchers then iteratively generate theories and test them with experiments explicitly sampled from the design space, allowing results to be integrated across experiments. Given recent methodological and technological developments, we conclude that this approach is feasible and would generate more-reliable, more-cumulative empirical and theoretical knowledge than the current paradigm – and with far greater efficiency.
Cognitive symptoms are common during and following episodes of depression. Little is known about the persistence of self-reported and performance-based cognition with depression and functional outcomes.
Methods
This is a secondary analysis of a prospective naturalistic observational clinical cohort study of individuals with recurrent major depressive disorder (MDD; N = 623). Participants completed app-based self-reported and performance-based cognitive function assessments alongside validated measures of depression, functional disability, and self-esteem every 3 months. Participants were followed-up for a maximum of 2-years. Multilevel hierarchically nested modelling was employed to explore between- and within-participant variation over time to identify whether persistent cognitive difficulties are related to levels of depression and functional impairment during follow-up.
Results
508 individuals (81.5%) provided data (mean age: 46.6, s.d.: 15.6; 76.2% female). Increasing persistence of self-reported cognitive difficulty was associated with higher levels of depression and functional impairment throughout the follow-up. In comparison to low persistence of objective cognitive difficulty (<25% of timepoints), those with high persistence (>75% of timepoints) reported significantly higher levels of depression (B = 5.17, s.e. = 2.21, p = 0.019) and functional impairment (B = 4.82, s.e. = 1.79, p = 0.002) over time. Examination of the individual cognitive modules shows that persistently impaired executive function is associated with worse functioning, and poor processing speed is particularly important for worsened depressive symptoms.
Conclusions
We replicated previous findings of greater persistence of cognitive difficulty with increasing severity of depression and further demonstrate that these cognitive difficulties are associated with pervasive functional disability. Difficulties with cognition may be an indicator and target for further treatment input.
Causes of childhood behavior problems remain poorly understood. Enriched family environments and corresponding brain development may reduce the risk of their onset, but research investigating white matter neurodevelopmental pathways explaining associations between the family environment and behavior remains limited. We hypothesized that more positive prenatal and mid-childhood family functioning – a measure of a family's problem solving and supportive capacity – would be associated with two markers of preadolescent white matter neurodevelopment related to reduced behavior problems: higher global fractional anisotropy (FA) and lower global mean diffusivity (MD).
Methods
Data are from 2727 families in the Generation R Study, the Netherlands. Mothers reported family functioning (McMaster Family Assessment Device, range 1–4, higher scores indicate healthier functioning) prenatally and in mid-childhood (mean age 6.1 years). In preadolescence (mean age 10.1), the study collected diffusion-weighted scans. We computed standardized global MD and FA values by averaging metrics from 27 white matter tracts, and we fit linear models adjusting for possible confounders to examine global and tract-specific outcomes.
Results
Prenatal and mid-childhood family functioning scores were moderately correlated, r = 0.38. However, only prenatal family functioning – and not mid-childhood functioning – was associated with higher global FA and lower global MD in preadolescence in fully adjusted models: βglobal FA = 0.11 (95% CI 0.00, 0.21) and βglobal MD = −0.15 (95% CI −0.28, −0.03) per one-unit increase in functioning score. Sensitivity and tract-specific analyses supported these global findings.
Conclusions
These results suggest high-functioning prenatal or perinatal family environments may confer lasting white matter neurodevelopmental benefits into preadolescence.
The Rapid ASKAP Continuum Survey (RACS) is the first large sky survey using the Australian Square Kilometre Array Pathfinder (ASKAP), covering the sky south of $+41^\circ$ declination. With ASKAP’s large, instantaneous field of view, ${\sim}31\,\mathrm{deg}^2$, RACS observed the entire sky at a central frequency of 887.5 MHz using 903 individual pointings with 15 minute observations. This has resulted in the deepest radio survey of the full Southern sky to date at these frequencies. In this paper, we present the first Stokes I catalogue derived from the RACS survey. This catalogue was assembled from 799 tiles that could be convolved to a common resolution of $25^{\prime\prime}$, covering a large contiguous region in the declination range $\delta=-80^{\circ}$ to $+30^\circ$. The catalogue provides an important tool for both the preparation of future ASKAP surveys and for scientific research. It consists of $\sim$2.1 million sources and excludes the $|b|<5^{\circ}$ region around the Galactic plane. This provides a first extragalactic catalogue with ASKAP covering the majority of the sky ($\delta<+30^{\circ}$). We describe the methods to obtain this catalogue from the initial RACS observations and discuss the verification of the data, to highlight its quality. Using simulations, we find this catalogue detects 95% of point sources at an integrated flux density of $\sim$5 mJy. Assuming a typical sky source distribution model, this suggests an overall 95% point source completeness at an integrated flux density $\sim$3 mJy. The catalogue will be available through the CSIRO ASKAP Science Data Archive (CASDA).
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to $\sim\!5$ yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim\!162$ h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of $0.24\ \mathrm{mJy\ beam}^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
The inaugural data from the first systematic program of sea-ice observations in Kotzebue Sound, Alaska, in 2018 coincided with the first winter in living memory when the Sound was not choked with ice. The following winter of 2018–19 was even warmer and characterized by even less ice. Here we discuss the mass balance of landfast ice near Kotzebue (Qikiqtaġruk) during these two anomalously warm winters. We use in situ observations and a 1-D thermodynamic model to address three research questions developed in partnership with an Indigenous Advisory Council. In doing so, we improve our understanding of connections between landfast ice mass balance, marine mammals and subsistence hunting. Specifically, we show: (i) ice growth stopped unusually early due to strong vertical ocean heat flux, which also likely contributed to early start to bearded seal hunting; (ii) unusually thin ice contributed to widespread surface flooding. The associated snow ice formation partly offset the reduced ice growth, but the flooding likely had a negative impact on ringed seal habitat; (iii) sea ice near Kotzebue during the winters of 2017–18 and 2018–19 was likely the thinnest since at least 1945, driven by a combination of warm air temperatures and a persistent ocean heat flux.