We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $F$ denote a binary form of order $d$ over the complex numbers. If $r$ is a divisor of $d$, then the Hilbert covariant ${{H}_{r,\,d}}\,\left( F \right)$ vanishes exactly when $F$ is the perfect power of an order $r$ form. In geometric terms, the coefficients of $H$ give defining equations for the image variety $X$ of an embedding ${{\text{P}}^{r}}\,\to \,{{\text{P}}^{d}}$. In this paper we describe a new construction of the Hilbert covariant and simultaneously situate it into a wider class of covariants called the Göttingen covariants, all of which vanish on $X$. We prove that the ideal generated by the coefficients of $H$ defines $X$ as a scheme. Finally, we exhibit a generalisation of the Göttingen covariants to $n$-ary forms using the classical Clebsch transfer principle.
Let A, B denote binary forms of order d, and let 2r−1 = (A, B)2r−1 be the sequence of their linear combinants for . It is known that 1, 3 together determine the pencil {A + λ B}λ∈P1 and hence indirectly the higher combinants 2r−1. In this paper we exhibit explicit formulae for all r ≥ 3, which allow us to recover 2r−1 from the knowledge of 1 and 3. The calculations make use of the symbolic method in classical invariant theory, as well as the quantum theory of angular momentum. Our theorem pertains to the plethysm representation ∧2Sd for the group SL2. We give an example for the group SL3 to show that such a result may hold for other categories of representations.
This is a note on the classical Waring's problem for algebraic forms. Fix integers $(n,d,r,s)$, and let $\Lambda $ be a general $r$-dimensional subspace of degree $d$ homogeneous polynomials in $n+1$ variables. Let $\mathcal{A}$ denote the variety of $s$-sided polar polyhedra of $\Lambda $. We carry out a case-by-case study of the structure of $\mathcal{A}$ for several specific values of $(n,d,r,s)$. In the first batch of examples, $\mathcal{A}$ is shown to be a rational variety. In the second batch, $\mathcal{A}$ is a finite set of which we calculate the cardinality.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.