We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cancer is a life-changing experience, and side effects from treatment can make it difficult for survivors to return to their pre-cancer “normal life.” We explored the “new normal” and barriers to achieving it among lung cancer survivors who underwent surgery.
Methods
Semi-structured interviews were conducted with 32 recurrence-free non–small cell lung cancer survivors. We asked survivors how life had changed; how they defined the “new normal”; barriers that prevent them from achieving a “normal” life; and unmet needs or support for normalcy. Thematic analysis was performed.
Results
Defining “new normal” subjectively depends on an individual’s expectation of recovery: (1) being able to do what they want without pain or discomfort; (2) being able to do activities they could accomplish before their surgery; and (3) being able to work, earn money, and support their family. We found that (1) persistent symptoms, (2) fear of cancer recurrence, (3) high expectations in recovery, and (4) psychosocial stress and guilty feelings were barriers to achieving a “new normal.” The needs and support for normalcy were information on expected trajectories, postoperative management, and support from family and society.
Significance of results
Survivors defined the “new normal” differently, depending on their expectations for recovery. Informing survivors about the “new normal” so they could expect possible changes and set realistic goals for their life after cancer. Health professionals need to communicate with survivors about expectations for “normality” from the beginning of treatment, and it should be included in comprehensive survivorship care.
Nosocomial transmission of COVID-19 among immunocompromised hosts can have a serious impact on COVID-19 severity, underlying disease progression and SARS-CoV-2 transmission to other patients and healthcare workers within hospitals. We experienced a nosocomial outbreak of COVID-19 in the setting of a daycare unit for paediatric and young adult cancer patients. Between 9 and 18 November 2020, 473 individuals (181 patients, 247 caregivers/siblings and 45 staff members) were exposed to the index case, who was a nursing staff. Among them, three patients and four caregivers were infected. Two 5-year-old cancer patients with COVID-19 were not severely ill, but a 25-year-old cancer patient showed prolonged shedding of SARS-CoV-2 RNA for at least 12 weeks, which probably infected his mother at home approximately 7–8 weeks after the initial diagnosis. Except for this case, no secondary transmission was observed from the confirmed cases in either the hospital or the community. To conclude, in the day care setting of immunocompromised children and young adults, the rate of in-hospital transmission of SARS-CoV-2 was 1.6% when applying the stringent policy of infection prevention and control, including universal mask application and rapid and extensive contact investigation. Severely immunocompromised children/young adults with COVID-19 would have to be carefully managed after the mandatory isolation period while keeping the possibility of prolonged shedding of live virus in mind.
A new design method of an ultra-wideband circularly-polarized planar multiple-input-multiple-output (MIMO) antenna is presented in this paper. The proposed MIMO antenna consists of four unit cell antennas, being comprised of a microstrip feed line and a square slotted ground plane. In the proposed unit cell design, a circular stub is protruded from the ground plane strip for achieving circular polarization. The unit cell of the MIMO antenna is optimized by adjusting design parameters. The compact four-port MIMO antenna prototype is designed on the FR4 substrate with the overall dimensions of 45 × 45 × 1.6 mm3. The proposed four-port MIMO antenna design provides an impedance bandwidth (S11 < −10 dB) of 112% (3.1–11 GHz) and a 3 dB axial ratio bandwidth of 36% (4.8–6.9 GHz). The performance of the fabricated MIMO antenna shows good agreement between the EM simulation and measurement results.
Recent analyses of Lee et al. (2018, 2019) have confirmed that Galactic bulge consists of stellar populations originated from Milky Way globular clusters (MWGCs). Motivated by this, here we present the evolutionary population synthesis (EPS) for the Galactic bulge and early-type galaxies (ETGs) with the realistic treatment of individual variations in light elements observed in the MWGCs. We have utilized our model with GC-origin populations to explain the CN spread observed in ETGs, and the results show remarkable matches with the observations. We further employ our model to estimate the age of ETGs, which are considered as good analogs for the MW bulge. We find that, without the effect of our new treatments, EPS models will almost always underestimate the true age of ETGs. Our analysis indicates that the EPS with GC-origin populations is an essential constraint in determining the ETG formation epoch and is closely related to understanding the evolution of the Universe.
Spirituality is what gives people meaning and purpose in life, and it has been recognized as a critical factor in patients’ well-being, particularly at the ends of their lives. Studies have demonstrated relationships between spirituality and patient-reported outcomes such as quality of life and mental health. Although a number of studies have suggested that spiritual belief can be associated with mortality, the results are inconsistent. We aimed to determine whether spirituality was related to survival in advanced cancer inpatients in Korea.
Method
For this multicenter study, we recruited adult advanced cancer inpatients who had been admitted to seven palliative care units with estimated survival of <3 months. We measured spirituality at admission using the Korean version of the Functional Assessment of Chronic Illness Therapy-Spiritual Well-Being (FACIT-sp), which comprises two subscales: meaning/peace and faith. We calculated a Kaplan-Meier curve for spirituality, dichotomized at the predefined cutoffs and medians for the total scale and each of the two subscales, and performed univariate regression with a Cox proportional hazard model.
Result
We enrolled a total of 204 adults (mean age: 64.5 ± 13.0; 48.5% female) in the study. The most common primary cancer diagnoses were lung (21.6%), colorectal (18.6%), and liver/biliary tract (13.0%). Median survival was 19.5 days (95% confidence interval [CI95%]: 23.5, 30.6). Total FACIT-sp score was not related to survival time (hazard ratio [HR] = 0.981, CI95% = 0.957, 1.007), and neither were the scores for its two subscales, meaning/peace (HR = 0.969, CI95% = 0.932, 1.008) and faith (HR = 0.981, CI95% = 0.938, 1.026).
Significance of results
Spirituality was not related to survival in advanced cancer inpatients in Korea. Plausible mechanisms merit further investigation.
The self-assembly of known good dies (KGDs) on substrates using the liquid capillary method is shown to be a promising technology to achieve three-dimensional (3D) heterogeneous system integration and packaging. Firstly, the effects of the edge structures of self-assembled substrates and chips on alignment accuracies were investigated. When hydrophobic sidewalls with 10-µm-height steps were applied to both chips and assembly sites formed on substrates, the alignment accuracy within 1.0 µm was realized. The alignment accuracies were within 2.0 µm using either substrates or chips having 10-µm-height step structures with hydrophobic sidewalls. Self-assembly of 12-ch vertical-cavity surface-emitting lasers (VCSELs) with a long rectangle shape on glass substrates were also demonstrated. Separation of assembly sites into twelve areas enhanced the resultant force acting on the VCSEL short edge. The enhanced resultant force provided the high alignment accuracies within 2.0 μm. After the self-assembly of the VCSEL and the subsequent thermal compression, the chips successfully exhibited no degradation of their current–voltage (I–V) characteristics and appropriate 850-nm light emission. We demonstrated self-assembly and microbump bonding using non-conductive film (NCF)-covered dies with Cu/Sn microbumps for high-throughput and high-yield multichip-to-wafer 3D integration. The self-assembly of the NCF-covered dies provided high alignment accuracy within 1.1 μm on average. After the self-assembly of NCF-coved dies and thermal compression, microbump chains composed of 7396 bump joints were successfully obtained, resulting in good electrical properties of 32 mΩ/joint without any bridge shorts and failures. The variations of microbump joint resistance were maintained within 5% of the initial value after thermal cycle testing of even 1000 cycles.
To overcome various concerns due to scaling-down device size in future large-scale integration (LSI), it is indispensable to introduce a new concept of heterogeneous three-dimensional (3D) integration in which various kinds of device chips with different sizes, devices, and materials are vertically stacked. To achieve such heterogeneous 3D integration, the key technology of self-assembly and electrostatic (SAE) bonding has been developed. The heterogeneous 3D integration technology with the SAE bonding method has enabled 3D heterogeneous stacking of different types of chips such as the compound semiconductor device chip, photonic device chip, and spintronic device chip on complementary metal oxide semiconductor chips. A 3D image sensor with extremely fast processing speed and a 3D microprocessor with a self-test and self-repair function for future automatic driving vehicles are typical examples of heterogeneous 3D LSIs which we fabricated by the SAE bonding method.
We investigated the pressure dependence of the inductive coupled plasma (ICP) oxidation on the electrical characteristics of the thin oxide films. Activation energies and electron temperatures with different pressures were estimated. To demonstrate the pressure effect on the plasma oxide quality, simple N type metal-oxide-semiconductor (NMOS) transistors were fabricated and investigated in a few electrical properties. At higher pressure than 200mTorr, plasma oxide has a slightly higher on-current and a lower interfacial trap density. The on-current gain seems to be related to the field mobility increase and the lower defective interface to the electron temperature during oxidation.
The morphological definition of atrial chambers, and the determination of atrial laterality, are based on analysis of the structure of the atrial appendages. The systemic and pulmonary venous connections to the heart, nonetheless, are important in the management of patients having isomeric appendages. In this study, therefore, we analysed the morphology of the postero-superior walls of the atrial chambers so as to provide evidence concerning the morphogenetic background of those hearts, and to improve operative management.
Methods
We reviewed 15 autopsied specimens with isomeric right appendages, and 10 with isomeric left appendages, paying particular attention to the morphology of the systemic and pulmonary venous connections. The postero-superior walls of the atrial chambers can be made up of the atrial body, the systemic venous components, or the pulmonary venous component. We analysed the contributions made by each of these components.
Results
The postero-superior walls of the atrial chambers were markedly variable, but could be grouped into five patterns. Bilaterally well-developed systemic venous components and absence of the pulmonary venous component within the hypoplastic atrial body were present in 9 hearts with extracardiac pulmonary venous connections in the setting of right isomerism. Bilaterally well-developed systemic venous components, and a hypoplastic pulmonary venous component within the hypoplastic atrial body, were present in 5 hearts with intracardiac pulmonary venous connections in right isomerism. Bilaterally well-developed systemic venous components, and a hypoplastic pulmonary venous component within the sizable atrial body, were present in 1 heart with an intracardiac pulmonary venous connection in right isomerism. A well-developed pulmonary venous component within the atrial body, and hypoplasia of one systemic venous component, were present in 7 hearts with left isomerism. A well-developed pulmonary venous component within the atrial body, and hypoplasia of bilateral systemic venous components, were present in 3 hearts with left isomerism.
Conclusions
The postero-superior walls of the atrial chambers in hearts with isomeric atrial appendages can be analysed on the basis of a compound structure made of bilateral systemic venous components, a central pulmonary venous component, and the body of the atrium. Hearts with isomeric right appendages have absence or hypoplasia of the pulmonary venous component, while hearts with isomeric left appendages have hypoplastic systemic venous components.
Analytical electron microscopy (AEM) was used to examine the initial interfacial reaction layers between a eutectic Sn–3.5Ag solder and an electroless nickel-immersion gold-plated (ENIG) Cu substrate during reflow at 255 °C for 1 s. AEM confirmed that a thick upper (Au,Ni)Sn2 layer and a thin Ni3Sn4 layer had formed through the reaction between the solder and ENIG. The amorphous electroless Ni(P) plated layer transformed into two P-rich Ni layers. One is a crystallized P-rich Ni layer, and the other is an intermediate state P-rich Ni layer before the crystallization. The crystallized P-rich layer consisted of Ni2P and Ni12P5. A thin Ni2P layer had formed underneath the Ni3Sn4 layer and is believed to be a predecessor of the Ni2SnP ternary phase. A Ni12P5 phase was observed beneath the Ni2P thin layer. In addition, nanocrystalline Ni was found to coexist with the amorphous Ni(P) phase in the intermediate state P-rich Ni layer.
To maintain pulmonary valvar function subsequent to repair of tetralogy of Fallot, we have inserted a homograft monocusp when a transjunctional patch was required. In this study, we have evaluated the mid- to long-term outcomes, aiming to determine the durability of the homograft.
Methods
Among 218 repairs performed for tetralogy of Fallot between July, 1996, and June, 2005, we inserted homograft monocusps in 54 patients, 4 of whom had associated absent pulmonary valve syndrome, 3 had pulmonary valvar atresia, and 1 had an atrioventricular septal defect with common atrioventricular junction. The median body weight at surgery was 7.8 kilograms, with a range from 3.9 to 42 kilograms. The function of the monocusp valve was assessed by regular echocardiography, using the Kaplan-Meier method and the Cox regression model for statistical analyses.
Results
There were 2 early deaths (3.7%), associated with respiratory infection. No late deaths were observed during the follow-up, which ranged from 0.3 to 120 months, with a median of 64.3 months. Freedom from valvar dysfunction was 67.2 ± 6.7% at 1 year, 37.1 ± 7.3% at 3 years, 23.8 ± 6.7% at 5 years, and 21.2 ± 6.4% at 7 years. We needed to replace the valve in 1 patient during follow-up. We found that ABO blood group incompatibility, stenosis of the pulmonary arteries, and associated absent pulmonary valve syndrome all adversely affected the function of the monocusp.
Conclusion
Our experiences show that insertion of a homograft monocusp can prevent pulmonary regurgitation in the early period after repair of tetralogy of Fallot, but the effects are limited in duration as degeneration progressed. We still need to determine whether this finding can improve the longer-term function of the right ventricle.
Oxidative modification of LDL is causally involved in the development of atherosclerosis and occurs in vivo in the blood as well as within the vascular wall. The present study attempted to explore whether polyphenolic flavonoids influence monocyte-endothelium interaction and lectin-like oxidised LDL receptor 1 (LOX-1) expression involved in the early development of atherosclerosis. The flavones luteolin and apigenin inhibited THP-1 cell adhesion onto oxidised LDL-activated human umbilical vein endothelial cells (HUVEC), while the flavanols of ( − )epigallocatechin gallate and (+)catechin, the flavonols of quercetin and rutin, and the flavanones of naringin, naringenin, hesperidin and hesperetin did not have such effects. Consistently, Western blot analysis revealed that the flavones at 25 μm dramatically and significantly abolished HUVEC expression of vascular cell adhesion molecule-1 and E-selectin evidently enhanced by oxidised LDL; these inhibitory effects were exerted by drastically down regulating mRNA levels of these cell adhesion molecules. In addition, quercetin and luteolin significantly attenuated expression of LOX-1 protein up regulated in oxidised LDL-activated HUVEC with a fall in transcriptional mRNA levels of LOX-1. In addition, quercetin and luteolin clearly blunted oxidised LDL uptake by HUVEC treated with oxidised LDL. The results demonstrate that the flavones luteolin and apigenin as well as quercetin were effective in the different initial steps of atherosclerosis process by inhibiting oxidised LDL-induced endothelial monocyte adhesion and/or oxidised LDL uptake. Therefore, certain flavonoids qualify as anti-atherogenic agents in LDL systems, which may have implications for strategies attenuating endothelial dysfunction-related atherosclerosis.
High plasma level of cholesterol is a well-known risk factor for atherosclerotic diseases. Oxidized LDL induces cellular and nuclear damage that leads to apoptotic cell death. We tested the hypothesis that flavonoids may function as antioxidants with regard to LDL incubated with 5 μm-Cu2+ alone or in combination with human umbilical vein endothelial cells (HUVEC). Cytotoxicity and formation of thiobarbituric acid-reactive substances induced by Cu2+-oxidized LDL were examined in the presence of various subtypes of flavonoid. Flavanols, flavonols and flavanones at a non-toxic dose of 50 μm markedly inhibited LDL oxidation by inhibiting the formation of peroxidative products. In contrast, the flavones luteolin and apigenin had no such effect, with >30 % of cells killed after exposure to 0.1 mg LDL/ml. Protective flavonoids, especially (−)-epigallocatechin gallate, quercetin, rutin and hesperetin, inhibited HUVEC nuclear condensation and fragmentation induced by Cu2+-oxidized LDL. In addition, immunochemical staining and Western blot analysis revealed that anti-apoptotic Bcl-2 expression was enhanced following treatment with these protective flavonoids. However, Bax expression and caspase-3 cleavage stimulated by 18 h incubation with oxidized LDL were reduced following treatment with these protective flavonoids. The down-regulation of Bcl-2 and up-regulation of caspase-3 activation were reversed by the cytoprotective flavonoids, (−)-epigallocatechin gallate, quercetin and hesperetin, at ≥10 μm. These results suggest that flavonoids may differentially prevent Cu2+-oxidized LDL-induced apoptosis and promote cell survival as potent antioxidants. Survival potentials of certain flavonoids against cytotoxic oxidized LDL appeared to stem from their disparate chemical structure. Furthermore, dietary flavonoids may have therapeutic potential for protecting the endothelium from oxidative stress and oxidized LDL-triggered atherogenesis.
The Far-ultraviolet IMaging Spectrograph (FIMS) is a small spectrograph optimized for the observations of diffuse hot interstellar medium in far-ultraviolet wavebands (900–1150Å and 1335–1750Å). The instrument is expected to be sensitive to emission line fluxes an order of magnitude fainter than any previous missions. FIMS is currently under development and is scheduled for launch in 2002.
We synthesized novel cross-linkable fluorinated copoly(arylene ether sulfide)s for optical waveguide applications, which have high thermal stability, high optical transparency in the infrared communication region, and much smaller birefringence than other thermally stable fluorinated polyimides. The refractive index of the material can be easily controlled from 1.515 to 1.587 by changing the copolymer composition in the materials. The birefringence of the cured polymers were 0.0031∼0.0039 at the wavelength of 1.55 μm. This is much lower than those of fluorinated polyimides for optical waveguides. The refractive index of fluorinated poly(arylene ether sulfide) (FPAESI) after being stored at 100 °C for 1000 hr remains almost constant demonstrating the thermal stability. The propagation loss of the channel waveguides fabricated using reactive ion etching was less than 0.4 dB/cm at the wavelength of 1.55 μm.
The surface properties of polyimide can be changed without altering the bulk properties. The surface layer (around 200 Å) of fully cured PMDA-ODA polyimide is chemically modified to polyamic acid which is subsequently imidized at 230 °C for 30 min to give an unordered polyimide surface. This unordered layer seems amorphous since it swells well in NMP. The modified surfaces are analyzed by surface sensitive techniques such as contact angle measurement, XPS, ISS, and external reflectance infrared (ERIR) spectroscopy. Adhesion of polyimides and chromium on the amorphous polyimides is greatly enhanced. Interdiffusion and subsequent mechanical interlocking are the major contributions to the polyimide-polyimide adhesion.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.