We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Early in the COVID-19 pandemic, the World Health Organization stressed the importance of daily clinical assessments of infected patients, yet current approaches frequently consider cross-sectional timepoints, cumulative summary measures, or time-to-event analyses. Statistical methods are available that make use of the rich information content of longitudinal assessments. We demonstrate the use of a multistate transition model to assess the dynamic nature of COVID-19-associated critical illness using daily evaluations of COVID-19 patients from 9 academic hospitals. We describe the accessibility and utility of methods that consider the clinical trajectory of critically ill COVID-19 patients.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
The radiocarbon (14C) calibration curve so far contains annually resolved data only for a short period of time. With accelerator mass spectrometry (AMS) matching the precision of decay counting, it is now possible to efficiently produce large datasets of annual resolution for calibration purposes using small amounts of wood. The radiocarbon intercomparison on single-year tree-ring samples presented here is the first to investigate specifically possible offsets between AMS laboratories at high precision. The results show that AMS laboratories are capable of measuring samples of Holocene age with an accuracy and precision that is comparable or even goes beyond what is possible with decay counting, even though they require a thousand times less wood. It also shows that not all AMS laboratories always produce results that are consistent with their stated uncertainties. The long-term benefits of studies of this kind are more accurate radiocarbon measurements with, in the future, better quantified uncertainties.
Balloon aortic valvuloplasty and open surgical valvotomy are procedures to treat neonatal aortic stenosis, and there is controversy as to which method has superior outcomes.
Methods:
We reviewed the records of patients at our institution since 2000 who had a balloon aortic valvuloplasty or surgical valvotomy via an open commissurotomy prior to 2 months of age.
Results:
Forty patients had balloon aortic valvuloplasty and 15 patients had surgical valvotomy via an open commissurotomy. There was no difference in post-procedure mean gradient by transthoracic echocardiogram, which were 25.8 mmHg for balloon aortic valvuloplasty and 26.2 mmHg for surgical valvotomy, p = 0.87. Post-procedure, 15% of balloon aortic valvuloplasty patients had moderate aortic insufficiency and 2.5% of patients had severe aortic insufficiency, while no surgical valvotomy patients had moderate or severe aortic insufficiency. The average number of post-procedure hospital days was 14.2 for balloon aortic valvuloplasty and 19.8 for surgical valvotomy (p = 0.52). Freedom from re-intervention was 69% for balloon aortic valvuloplasty and 67% for surgical valvotomy at 1 year, and 43% for balloon aortic valvuloplasty and 67% for surgical valvotomy at 5 years (p = 0.60).
Conclusions:
Balloon aortic valvuloplasty and surgical valvotomy provide similar short-term reduction in valve gradient. Balloon aortic valvuloplasty has a slightly shorter but not statistically significant hospital stay. Freedom from re-intervention is similar at 1 year. At 5 years, it is slightly higher in surgical valvotomy, though not statistically different. Balloon aortic valvuloplasty had a higher incidence of significant aortic insufficiency. Long-term comparisons cannot be made given the lack of long-term follow-up with surgical valvotomy.
To further understand the contribution of feedstuff ingredients to gut health in swine, gut histology and intestinal bacterial profiles associated with the use of two high-quality protein sources, microbially enhanced soybean meal (MSBM) and Menhaden fishmeal (FM) were assessed. Weaned pigs were fed one of three experimental diets: (1) basic diet containing corn and soybean meal (Negative Control (NEG)), (2) basic diet + fishmeal (FM; Positive Control (POS)) and (3) basic diet + MSBM (MSBM). Phase I POS and MSBM diets (d 0 to d 7 post-wean) included FM or MSBM at 7.5%, while Phase II POS and MSBM diets (d 8 to d 21) included FM or MSBM at 5.0%. Gastrointestinal tissue and ileal digesta were collected from euthanised pigs at d 21 (eight pigs/diet) to assess gut histology and intestinal bacterial profiles, respectively. Data were analysed using Proc Mixed in SAS, with pig as the experimental unit and pig (treatment) as the random effect. Histological and immunohistochemical analyses of stomach and small intestinal tissue using haematoxylin–eosin, Periodic Acid Schiff/Alcian blue and inflammatory cell staining did not reveal detectable differences in host response to dietary treatment. Ileal bacterial composition profiles were obtained from next-generation sequencing of PCR generated amplicons targeting the V1 to V3 regions of the 16S rRNA gene. Lactobacillus-affiliated sequences were found to be the most highly represented across treatments, with an average relative abundance of 64.0%, 59.9% and 41.80% in samples from pigs fed the NEG, POS and MSBM diets, respectively. Accordingly, the three most abundant Operational Taxonomic Units (OTUs) were affiliated to Lactobacillus, showing a distinct abundance pattern relative to dietary treatment. One OTU (SD_Ssd_00001), most closely related to Lactobacillus amylovorus, was found to be more abundant in NEG and POS samples compared to MSBM (23.5% and 35.0% v. 9.2%). Another OTU (SD_Ssd_00002), closely related to Lactobacillus johnsonii, was more highly represented in POS and MSBM samples compared to NEG (14.0% and 15.8% v. 0.1%). Finally, OTU Sd_Ssd-00011, highest sequence identity to Lactobacillus delbrueckii, was found in highest abundance in ileal samples from MSBM-fed pigs (1.9% and 3.3% v. 11.3, in POS, NEG and MSBM, respectively). There was no effect of protein source on bacterial taxa to the genus level or diversity based on principal component analysis. Dietary protein source may provide opportunity to enhance presence of specific members of Lactobacillus genus that are associated with immune-modulating properties without altering overall intestinal bacterial diversity.
We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ~48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ~39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ~0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ~30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (~6%) to have an AGN than radio quiet galaxies (~1%), but the majority of AGN are not detected in radio at this sensitivity.
Chlamydia trachomatis (CT) infections remain highly prevalent. CT reinfection occurs frequently within months after treatment, likely contributing to sustaining the high CT infection prevalence. Sparse studies have suggested CT reinfection is associated with a lower organism load, but it is unclear whether CT load at the time of treatment influences CT reinfection risk. In this study, women presenting for treatment of a positive CT screening test were enrolled, treated and returned for 3- and 6-month follow-up visits. CT organism loads were quantified at each visit. We evaluated for an association of CT bacterial load at initial infection with reinfection risk and investigated factors influencing the CT load at baseline and follow-up in those with CT reinfection. We found no association of initial CT load with reinfection risk. We found a significant decrease in the median log10 CT load from baseline to follow-up in those with reinfection (5.6 CT/ml vs. 4.5 CT/ml; P = 0.015). Upon stratification of reinfected subjects based upon presence or absence of a history of CT infections prior to their infection at the baseline visit, we found a significant decline in the CT load from baseline to follow-up (5.7 CT/ml vs. 4.3 CT/ml; P = 0.021) exclusively in patients with a history of CT infections prior to our study. Our findings suggest repeated CT infections may lead to possible development of partial immunity against CT.
Impaired β-cell development and insulin secretion are characteristic of intrauterine growth-restricted (IUGR) fetuses. In normally grown late gestation fetal sheep pancreatic β-cell numbers and insulin secretion are increased by 7–10 days of pulsatile hyperglycemia (PHG). Our objective was to determine if IUGR fetal sheep β-cell numbers and insulin secretion could also be increased by PHG or if IUGR fetal β-cells do not have the capacity to respond to PHG. Following chronic placental insufficiency producing IUGR in twin gestation pregnancies (n=7), fetuses were administered a PHG infusion, consisting of 60 min, high rate, pulsed infusions of dextrose three times a day with an additional continuous, low-rate infusion of dextrose to prevent a decrease in glucose concentrations between the pulses or a control saline infusion. PHG fetuses were compared with their twin IUGR fetus, which received a saline infusion for 7 days. The pulsed glucose infusion increased fetal arterial glucose concentrations an average of 83% during the infusion. Following the 7-day infusion, a square-wave fetal hyperglycemic clamp was performed in both groups to measure insulin secretion. The rate of increase in fetal insulin concentrations during the first 20 min of a square-wave hyperglycemic clamp was 44% faster in the PHG fetuses compared with saline fetuses (P<0.05). There were no differences in islet size, the insulin+ area of the pancreas and of the islets, and β-cell mass between groups (P>0.23). Chronic PHG increases early phase insulin secretion in response to acute hyperglycemia, indicating that IUGR fetal β-cells are functionally responsive to chronic PHG.
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
Although specific phobia is highly prevalent, associated with impairment, and an important risk factor for the development of other mental disorders, cross-national epidemiological data are scarce, especially from low- and middle-income countries. This paper presents epidemiological data from 22 low-, lower-middle-, upper-middle- and high-income countries.
Method
Data came from 25 representative population-based surveys conducted in 22 countries (2001–2011) as part of the World Health Organization World Mental Health Surveys initiative (n = 124 902). The presence of specific phobia as defined by the Diagnostic and Statistical Manual of Mental Disorders, fourth edition was evaluated using the World Health Organization Composite International Diagnostic Interview.
Results
The cross-national lifetime and 12-month prevalence rates of specific phobia were, respectively, 7.4% and 5.5%, being higher in females (9.8 and 7.7%) than in males (4.9% and 3.3%) and higher in high- and higher-middle-income countries than in low-/lower-middle-income countries. The median age of onset was young (8 years). Of the 12-month patients, 18.7% reported severe role impairment (13.3–21.9% across income groups) and 23.1% reported any treatment (9.6–30.1% across income groups). Lifetime co-morbidity was observed in 60.5% of those with lifetime specific phobia, with the onset of specific phobia preceding the other disorder in most cases (72.6%). Interestingly, rates of impairment, treatment use and co-morbidity increased with the number of fear subtypes.
Conclusions
Specific phobia is common and associated with impairment in a considerable percentage of cases. Importantly, specific phobia often precedes the onset of other mental disorders, making it a possible early-life indicator of psychopathology vulnerability.
The Dark Energy Survey is undertaking an observational programme imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the Dark Energy Survey will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts over 5 yr. Once gamma-ray bursts are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automated notices of gamma-ray burst activity, collates information from archival DES data, and disseminates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that non-public DES data provide for relative photometry of the optical counterparts of gamma-ray bursts, as well as for identifying key characteristics (e.g., photometric redshifts) of potential gamma-ray burst host galaxies. We provide the functional details of the DESAlert software, and its data products, and we show sample results from the application of DESAlert to numerous previously detected gamma-ray bursts, including the possible identification of several heretofore unknown gamma-ray burst hosts.
We describe the performance of the Boolardy Engineering Test Array, the prototype for the Australian Square Kilometre Array Pathfinder telescope. Boolardy Engineering Test Array is the first aperture synthesis radio telescope to use phased array feed technology, giving it the ability to electronically form up to nine dual-polarisation beams. We report the methods developed for forming and measuring the beams, and the adaptations that have been made to the traditional calibration and imaging procedures in order to allow BETA to function as a multi-beam aperture synthesis telescope. We describe the commissioning of the instrument and present details of Boolardy Engineering Test Array’s performance: sensitivity, beam characteristics, polarimetric properties, and image quality. We summarise the astronomical science that it has produced and draw lessons from operating Boolardy Engineering Test Array that will be relevant to the commissioning and operation of the final Australian Square Kilometre Array Path telescope.
In traditional transit timing variations (TTVs) analysis of multi-planetary systems, the individual TTVs are first derived from transit fitting and later modelled using n-body dynamic simulations to constrain planetary masses. We show that fitting simultaneously the transit light curves with the system dynamics (photo-dynamical model) increases the precision of the TTV measurements and helps constrain the system architecture. We exemplify the advantages of applying this photo-dynamical model to a multi-planetary system found in K2 data very close to 3:2 mean motion resonance, K2-19. In this case the period of the larger TTV variations (libration period) is much longer (>1.5 years) than the duration of the K2 observations (80 days). However, our method allows to detect the short period TTVs produced by the orbital conjunctions between the planets that in turn permits to uniquely characterise the system. Therefore, our method can be used to constrain the masses of near-resonant systems even when the full libration curve is not observed.
This paper describes the system architecture of a newly constructed radio telescope – the Boolardy engineering test array, which is a prototype of the Australian square kilometre array pathfinder telescope. Phased array feed technology is used to form multiple simultaneous beams per antenna, providing astronomers with unprecedented survey speed. The test array described here is a six-antenna interferometer, fitted with prototype signal processing hardware capable of forming at least nine dual-polarisation beams simultaneously, allowing several square degrees to be imaged in a single pointed observation. The main purpose of the test array is to develop beamforming and wide-field calibration methods for use with the full telescope, but it will also be capable of limited early science demonstrations.
Latent infection from Toxoplasma gondii (T. gondii) is widespread worldwide and has been associated with cognitive deficits in some but not all animal models and in humans. We tested the hypothesis that latent toxoplasmosis is associated with decreased cognitive function in a large cross-sectional dataset, the National Health and Nutrition Examination Survey (NHANES). There were 4178 participants aged 20–59 years, of whom 19·1% had IgG antibodies against T. gondii. Two ordinary least squares (OLS) regression models adjusted for the NHANES complex sampling design and weighted to represent the US population were estimated for simple reaction time, processing speed and short-term memory or attention. The first model included only main effects of latent toxoplasmosis and demographic control variables, and the second added interaction terms between latent toxoplasmosis and the poverty-to-income ratio (PIR), educational attainment and race-ethnicity. We also used multivariate models to assess all three cognitive outcomes in the same model. Although the models evaluating main effects only demonstrated no association between latent toxoplasmosis and the cognitive outcomes, significant interactions between latent toxoplasmosis and the PIR, between latent toxoplasmosis and educational attainment, and between latent toxoplasmosis and race-ethnicity indicated that latent toxoplasmosis may adversely affect cognitive function in certain groups.