We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We formulate a general question regarding the size of the iterated Galois groups associated with an algebraic dynamical system and then we discuss some special cases of our question. Our main result answers this question for certain split polynomial maps whose coordinates are unicritical polynomials.
The closure of the periodic points of rational maps over a non-archimedean field is studied. An analogue of Montel's theorem over non-archimedean fields is first proved. Then, it is shown that the (nonempty) Julia set of a rational map over a non-archimedean field is contained in the closure of the periodic points.
Let K be a function field over finite field ${\Bbb F}_q$ and let ${\Bbb A}$ be a ring consisting of elements of K regular away from a fixed place ∞ of K. Let φ be a Drinfeld ${\Bbb A}$-module defined over an ${\Bbb A}$-field L. In the case where L is a finite ${\Bbb A}$-field, we study the characteristic polynomial $P$φ(X) of the geometric Frobenius. A formula for the sign of the constant term of $P$φ(X) in terms of ‘leading coefficient’ of φ is given. General formula to determine signs of other coefficients of $P$φ(X) is also derived. In the case where L is a global ${\Bbb A}$-field of generic characteristic, we apply these formulae to compute the Dirichlet density of places where the Frobenius traces have the maximal possible degree permitted by the ‘Riemann hypothesis’.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.