We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider point distributions in compact connected two-point homogeneous spaces (Riemannian symmetric spaces of rank one). All such spaces are known: they are the spheres in the Euclidean spaces, the real, complex and quaternionic projective spaces and the octonionic projective plane. For all such spaces the best possible bounds for the quadratic discrepancies and sums of pairwise distances are obtained in the paper (Theorems 2.1 and 2.2). Distributions of points of $t$-designs on such spaces are also considered (Theorem 2.3). In particular, it is shown that the optimal $t$-designs meet the best possible bounds for quadratic discrepancies and sums of pairwise distances (Corollary 2.1). Our approach is based on the Fourier analysis on two-point homogeneous spaces and explicit spherical function expansions for discrepancies and sums of distances (Theorems 4.1 and 4.2).
We consider finite point subsets (distributions) in compact metric spaces. In the case of general rectifiable metric spaces, non-trivial bounds for sums of distances between points of distributions and for discrepancies of distributions in metric balls are given (Theorem 1.1). We generalize Stolarsky’s invariance principle to distance-invariant spaces (Theorem 2.1). For arbitrary metric spaces, we prove a probabilistic invariance principle (Theorem 3.1). Furthermore, we construct equal-measure partitions of general rectifiable compact metric spaces into parts of small average diameter (Theorem 4.1).
Dyadic shifts $D\oplus T$ of point distributions $D$ in the $d$-dimensional unit cube $U^{d}$ are considered as a form of randomization. Explicit formulas for the $L_{q}$-discrepancies of such randomized distributions are given in the paper in terms of Rademacher functions. Relying on the statistical independence of Rademacher functions, Khinchin’s inequalities, and other related results, we obtain very sharp upper and lower bounds for the mean $L_{q}$-discrepancies, $0<q\leqslant \infty$. The upper bounds imply directly a generalization of the well-known Chen theorem on mean discrepancies with respect to dyadic shifts (Theorem 2.1). From the lower bounds, it follows that for an arbitrary $N$-point distribution $D_{N}$ and any exponent $0<q\leqslant 1$, there exist dyadic shifts $D_{N}\oplus T$ such that the $L_{q}$-discrepancy ${\mathcal{L}}_{q}[D_{N}\oplus T]>c_{d,q}(\log N)^{(1/2)(d-1)}$ (Theorem 2.2). The lower bounds for the $L_{\infty }$-discrepancy are also considered in the paper. It is shown that for an arbitrary $N$-point distribution $D_{N}$, there exist dyadic shifts $D_{N}\oplus T$ such that ${\mathcal{L}}_{\infty }[D_{N}\oplus T]>c_{d}(\log N)^{(1/2)d}$ (Theorem 2.3).
Let N(ρ; ω) be the number of points of a d-dimensional lattice Γ. where d≥2, inside a ball of radius ρ centred at the point ω. Denote by (ρ) the number N(ρ; ω) averaged over ω in the elementary cell Ω of the lattice Γ. The main result is the following lower bound for for dimensions d ≅ l(mod 4):
In the present paper we give an improvement of a previous result of the paper [M. M. Skriganov. Ergodic theory on $SL(n)$, diophantine approximations and anomalies in the lattice point problem. Inv. Math.132(1), (1998), 1–72, Theorem 2.2] on logarithmically small errors in the lattice point problem for polyhedra. This improvement is based on an analysis of hidden symmetries of the problem generated by the Weyl group for $SL(n,\mathbb{B})$. Let $UP$ denote a rotation of a given compact polyhedron $P\subset\mathbb{B}^n$ by an orthogonal matrix $U\in SO(n)$, $tUP$ a dilation of $UP$ by a parameter $t>0$ and $N(tUP)$ the number of integer points $\gamma\in\mathbb{Z}^n$ which fall into the polyhedron $tUP$. We show that for almost all rotations $U$ (in the sense of the Haar measure on $SO(n)$) the following asymptotic formula\[N(t\UP)=t^n{\rm vol} P+ O((\log t)^{n-1+\varepsilon}),\quad t\to\infty,\]holds with arbitrarily small $\varepsilon>0$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.