We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Reward processing has been proposed to underpin the atypical social feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social reward processing in ASD.
Aims
Utilising a large sample, we aimed to assess reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD.
Method
Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6–30.6 years of age) and 181 typically developing participants (7.6–30.8 years of age).
Results
Across social and monetary reward anticipation, whole-brain analyses showed hypoactivation of the right ventral striatum in participants with ASD compared with typically developing participants. Further, region of interest analysis across both reward types yielded ASD-related hypoactivation in both the left and right ventral striatum. Across delivery of social and monetary reward, hyperactivation of the ventral striatum in individuals with ASD did not survive correction for multiple comparisons. Dimensional analyses of autism and attention-deficit hyperactivity disorder (ADHD) scores were not significant. In categorical analyses, post hoc comparisons showed that ASD effects were most pronounced in participants with ASD without co-occurring ADHD.
Conclusions
Our results do not support current theories linking atypical social interaction in ASD to specific alterations in social reward processing. Instead, they point towards a generalised hypoactivity of ventral striatum in ASD during anticipation of both social and monetary rewards. We suggest this indicates attenuated reward seeking in ASD independent of social content and that elevated ADHD symptoms may attenuate altered reward seeking in ASD.
Coronavirus disease 2019 (COVID-19) spread globally, including across Europe, resulting in different morbidity and mortality outcomes. The aim of this study was to explore the progression of the COVID-19 pandemic over 18 mo in relation to the effect of COVID-19 vaccination at a population level across 35 nations in Europe, while evaluating the data for cross-border epidemiological trends to identify any pertinent lessons that can be implemented in the future.
Methods:
Epidemiological data were obtained from European Centre for Disease Prevention and Control and Our World in Data databases while Ministry of Health websites of each respective country and local newspapers were used for COVID-19-related vaccination strategies. Case, mortality, and vaccination incidence comparative analyses were made across neighboring countries.
Results:
Similar morbidity and mortality outcomes were evident across neighboring countries over 18 mo, with a bidirectional relationship evident between cumulative fully vaccinated population and case fatality rates.
Conclusion:
Countries’ COVID-19 outcome is related on national mitigative measures, vaccination rollouts, and neighboring countries’ actions and COVID-19 situations. Mass population vaccination appeared to be effective in reducing COVID-19 case severity and mortality rates. Vaccination equity and pan-European commitment for cross-border governance appear to be the way forward to ensure populations’ return to “normality.”
Doubtless, the conscious brain integrates masses of information. But declaring that consciousness simply “emerges” when enough has accumulated, doesn't really explain how first person experience is implemented by neurons. Moreover, empirical observations challenge integrated information theory's (IIT) reliance on thalamo–cortical interactions as the information integrator. More likely, the cortex streams processed information to a still-enigmatic consciousness generator, one perhaps located in the brainstem.
Reward Deficiency Syndrome (RDS) is an umbrella term for all drug and nondrug addictive behaviors, due to a dopamine deficiency, “hypodopaminergia.” There is an opioid-overdose epidemic in the USA, which may result in or worsen RDS. A paradigm shift is needed to combat a system that is not working. This shift involves the recognition of dopamine homeostasis as the ultimate treatment of RDS via precision, genetically guided KB220 variants, called Precision Behavioral Management (PBM). Recognition of RDS as an endophenotype and an umbrella term in the future DSM 6, following the Research Domain Criteria (RDoC), would assist in shifting this paradigm.
Research in developmental neuropsychiatric conditions has revealed morphological and functional divergences in the brain. In some cases, the divergences occur due to one or two highly penetrant genomic mutations. In case such as autism, mutations in varied sets of genes may produce a convergent autism behavioral phenotype. It is thus likely that there may be other forms of non-genomic regulation of gene expression during development affecting behavioral outcome. Epigenetic gene regulation is one such mechanism that can permanently switch on or switch off gene expression, and these epigenetic changes can be inherited from one cell stage to another during differentiation, mimicking the effects of genomic mutations. Epigenetic gene regulation occurring during early developmental stages of cellular differentiation, which are highly sensitive to environmental cues, is the primary mechanism responsible for the phenomenon known as evolutionary development or “evo-devo.” This chapter discusses these mechanisms in the context of autism and the environmental factors that influence it.
This study assessed the dimensionality of the Systemizing Quotient-Revised (SQ-R), a measure of how strong a person's interest is in systems, using two statistical approaches: Rasch modeling and Confirmatory Factor Analysis (CFA). Participants included N = 675 with an autism spectrum condition (ASC), N = 1369 family members of people with ASC, and N = 2014 typical controls. Data were applied to the Rasch model (Rating Scale) using WINSTEPS. The data fit the Rasch model quite well lending support to the idea that systemizing could be seen as unidimensional. Reliability estimates were .99 for items and .92 for persons. A CFA parceling approach confirmed that a unidimensional model fit the data. There was, however, differential functioning by sex in some of these items. An abbreviated 44-item version of the scale, consisting of items without differential item functioning by sex was developed. This shorter scale also was tested from a Rasch perspective and confirmed through CFA. All measures showed differences on total scale scores between those participants with and without ASC (d = 0.71, p < .005), and between sexes (d = 0.53, p < .005). We conclude that the SQ-R is an appropriate measure of systemizing which can be measured along a single dimension.
The Supernova Working Group was re-established at the IAU XXV General Assembly in Sydney, 21 July 2003, sponsored by Commissions 28 (Galaxies) and 47 (Cosmology). Here we report on some of its activities since 2005.
Several research groups have identified a network of regions of the adult cortex that are activated during social perception and cognition tasks. In this paper we focus on the development of components of this social brain network during early childhood and test aspects of a particular viewpoint on human functional brain development: “interactive specialization.” Specifically, we apply new data analysis techniques to a previously published data set of event-related potential (ERP) studies involving 3-, 4-, and 12-month-old infants viewing faces of different orientation and direction of eye gaze. Using source separation and localization methods, several likely generators of scalp recorded ERP are identified, and we describe how they are modulated by stimulus characteristics. We then review the results of a series of experiments concerned with perceiving and acting on eye gaze, before reporting on a new experiment involving young children with autism. Finally, we discuss predictions based on the atypical emergence of the social brain network.This work was funded by UK Medical Research Council Programme Grants (G9901005 and G9715587) to M.H.J. and S.B.C. T.F. was supported by a Wellcome Trust Research Fellowship (073985/Z/03/Z).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.