In this study, we investigate the impact of X-rays produced by conventional mCT instruments on fossil materials dated by radiocarbon. Our results clearly show a decrease on the collagen preservation in fossil and modern bones and teeth, and therefore on the radiocarbon analytical results (in particular, the collagen yield and, possibly, stable isotope composition), after mCT scanning. In other words, all the samples analysed here have experienced a noticeable radiation damage, regardless of their nature (bone and dental tissue) and age (modern and fossil). Given these observations, a prudent approach would be for radiocarbon laboratories to expect lower collagen yields for samples that have been previously mCT scanned and ensure appropriately sized standards are processed alongside these samples. Additionally, samples with originally low collagen yields might become unsuitable for radiocarbon dating after mCT or at least show a yield lower than the usual minimum cut-off value. In this case, it might be viable to extend the collagen yield quality assurance parameter for mCT scanned bones and teeth and instead focus on the C:N ratio as the most appropriate indicator of collagen quality, although we cannot exclude that the latter may also be impacted by X-ray exposure. Further investigations on a larger set of samples are required to confirm these first observations. Nevertheless, in the light of these results, we can reasonably conclude by recommending caution regarding the systematic and unlimited use of mCT scanning in palaeoanthropology or in other related disciplines involving fossil material.