We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cognitive training is a non-pharmacological intervention aimed at improving cognitive function across a single or multiple domains. Although the underlying mechanisms of cognitive training and transfer effects are not well-characterized, cognitive training has been thought to facilitate neural plasticity to enhance cognitive performance. Indeed, the Scaffolding Theory of Aging and Cognition (STAC) proposes that cognitive training may enhance the ability to engage in compensatory scaffolding to meet task demands and maintain cognitive performance. We therefore evaluated the effects of cognitive training on working memory performance in older adults without dementia. This study will help begin to elucidate non-pharmacological intervention effects on compensatory scaffolding in older adults.
Participants and Methods:
48 participants were recruited for a Phase III randomized clinical trial (Augmenting Cognitive Training in Older Adults [ACT]; NIH R01AG054077) conducted at the University of Florida and University of Arizona. Participants across sites were randomly assigned to complete cognitive training (n=25) or an education training control condition (n=23). Cognitive training and the education training control condition were each completed during 60 sessions over 12 weeks for 40 hours total. The education training control condition involved viewing educational videos produced by the National Geographic Channel. Cognitive training was completed using the Posit Science Brain HQ training program, which included 8 cognitive training paradigms targeting attention/processing speed and working memory. All participants also completed demographic questionnaires, cognitive testing, and an fMRI 2-back task at baseline and at 12-weeks following cognitive training.
Results:
Repeated measures analysis of covariance (ANCOVA), adjusted for training adherence, transcranial direct current stimulation (tDCS) condition, age, sex, years of education, and Wechsler Test of Adult Reading (WTAR) raw score, revealed a significant 2-back by training group interaction (F[1,40]=6.201, p=.017, η2=.134). Examination of simple main effects revealed baseline differences in 2-back performance (F[1,40]=.568, p=.455, η2=.014). After controlling for baseline performance, training group differences in 2-back performance was no longer statistically significant (F[1,40]=1.382, p=.247, η2=.034).
Conclusions:
After adjusting for baseline performance differences, there were no significant training group differences in 2-back performance, suggesting that the randomization was not sufficient to ensure adequate distribution of participants across groups. Results may indicate that cognitive training alone is not sufficient for significant improvement in working memory performance on a near transfer task. Additional improvement may occur with the next phase of this clinical trial, such that tDCS augments the effects of cognitive training and results in enhanced compensatory scaffolding even within this high performing cohort. Limitations of the study include a highly educated sample with higher literacy levels and the small sample size was not powered for transfer effects analysis. Future analyses will include evaluation of the combined intervention effects of a cognitive training and tDCS on nback performance in a larger sample of older adults without dementia.
Cognitive training has shown promise for improving cognition in older adults. Aging involves a variety of neuroanatomical changes that may affect response to cognitive training. White matter hyperintensities (WMH) are one common age-related brain change, as evidenced by T2-weighted and Fluid Attenuated Inversion Recovery (FLAIR) MRI. WMH are associated with older age, suggestive of cerebral small vessel disease, and reflect decreased white matter integrity. Higher WMH load associates with reduced threshold for clinical expression of cognitive impairment and dementia. The effects of WMH on response to cognitive training interventions are relatively unknown. The current study assessed (a) proximal cognitive training performance following a 3-month randomized control trial and (b) the contribution of baseline whole-brain WMH load, defined as total lesion volume (TLV), on pre-post proximal training change.
Participants and Methods:
Sixty-two healthy older adults ages 65-84 completed either adaptive cognitive training (CT; n=31) or educational training control (ET; n=31) interventions. Participants assigned to CT completed 20 hours of attention/processing speed training and 20 hours of working memory training delivered through commercially-available Posit Science BrainHQ. ET participants completed 40 hours of educational videos. All participants also underwent sham or active transcranial direct current stimulation (tDCS) as an adjunctive intervention, although not a variable of interest in the current study. Multimodal MRI scans were acquired during the baseline visit. T1- and T2-weighted FLAIR images were processed using the Lesion Segmentation Tool (LST) for SPM12. The Lesion Prediction Algorithm of LST automatically segmented brain tissue and calculated lesion maps. A lesion threshold of 0.30 was applied to calculate TLV. A log transformation was applied to TLV to normalize the distribution of WMH. Repeated-measures analysis of covariance (RM-ANCOVA) assessed pre/post change in proximal composite (Total Training Composite) and sub-composite (Processing Speed Training Composite, Working Memory Training Composite) measures in the CT group compared to their ET counterparts, controlling for age, sex, years of education and tDCS group. Linear regression assessed the effect of TLV on post-intervention proximal composite and sub-composite, controlling for baseline performance, intervention assignment, age, sex, years of education, multisite scanner differences, estimated total intracranial volume, and binarized cardiovascular disease risk.
Results:
RM-ANCOVA revealed two-way group*time interactions such that those assigned cognitive training demonstrated greater improvement on proximal composite (Total Training Composite) and sub-composite (Processing Speed Training Composite, Working Memory Training Composite) measures compared to their ET counterparts. Multiple linear regression showed higher baseline TLV associated with lower pre-post change on Processing Speed Training sub-composite (ß = -0.19, p = 0.04) but not other composite measures.
Conclusions:
These findings demonstrate the utility of cognitive training for improving postintervention proximal performance in older adults. Additionally, pre-post proximal processing speed training change appear to be particularly sensitive to white matter hyperintensity load versus working memory training change. These data suggest that TLV may serve as an important factor for consideration when planning processing speed-based cognitive training interventions for remediation of cognitive decline in older adults.
Cognitive training using a visual speed-of-processing task, called the Useful Field of View (UFOV) task, reduced dementia risk and reduced decline in activities of daily living at a 10-year follow-up in older adults. However, there is variability in the level of cognitive gains after cognitive training across studies. One potential explanation for this variability could be moderating factors. Prior studies suggest variables moderating cognitive training gains share features of the training task. Learning trials of the Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) recruit similar cognitive abilities and have overlapping neural correlates with the UFOV task and speed-ofprocessing/working memory tasks and therefore could serve as potential moderators. Exploring moderating factors of cognitive training gains may boost the efficacy of interventions, improve rigor in the cognitive training literature, and eventually help provide tailored treatment recommendations. This study explored the association between the HVLT-R and BVMT-R learning and the UFOV task, and assessed the moderation of HVLT-R and BVMT-R learning on UFOV improvement after a 3-month speed-ofprocessing/attention and working memory cognitive training intervention in cognitively healthy older adults.
Participants and Methods:
75 healthy older adults (M age = 71.11, SD = 4.61) were recruited as part of a larger clinical trial through the Universities of Florida and Arizona. Participants were randomized into a cognitive training (n=36) or education control (n=39) group and underwent a 40-hour, 12-week intervention. Cognitive training intervention consisted of practicing 4 attention/speed-of-processing (including the UFOV task) and 4 working memory tasks. Education control intervention consisted of watching 40-minute educational videos. The HVLT-R and BVMT-R were administered at the pre-intervention timepoint as part of a larger neurocognitive battery. The learning ratio was calculated as: trial 3 total - trial 1 total/12 - trial 1 total. UFOV performance was measured at pre- and post-intervention time points via the POSIT Brain HQ Double Decision Assessment. Multiple linear regressions predicted baseline Double Decision performance from HVLT-R and BVMT-R learning ratios controlling for study site, age, sex, and education. A repeated measures moderation analysis assessed the moderation of HVLT-R and BVMT-R learning ratio on Double Decision change from pre- to post-intervention for cognitive training and education control groups.
Results:
Baseline Double Decision performance significantly associated with BVMT-R learning ratio (β=-.303, p=.008), but not HVLT-R learning ratio (β=-.142, p=.238). BVMT-R learning ratio moderated gains in Double Decision performance (p<.01); for each unit increase in BVMT-R learning ratio, there was a .6173 unit decrease in training gains. The HVLT-R learning ratio did not moderate gains in Double Decision performance (p>.05). There were no significant moderations in the education control group.
Conclusions:
Better visuospatial learning was associated with faster Double Decision performance at baseline. Those with poorer visuospatial learning improved most on the Double Decision task after training, suggesting that healthy older adults who perform below expectations may show the greatest training gains. Future cognitive training research studying visual speed-of-processing interventions should account for differing levels of visuospatial learning at baseline, as this could impact the magnitude of training outcomes.
Aging is associated with disruptions in functional connectivity within the default mode (DMN), frontoparietal control (FPCN), and cingulo-opercular (CON) resting-state networks. Greater within-network connectivity predicts better cognitive performance in older adults. Therefore, strengthening network connectivity, through targeted intervention strategies, may help prevent age-related cognitive decline or progression to dementia. Small studies have demonstrated synergistic effects of combining transcranial direct current stimulation (tDCS) and cognitive training (CT) on strengthening network connectivity; however, this association has yet to be rigorously tested on a large scale. The current study leverages longitudinal data from the first-ever Phase III clinical trial for tDCS to examine the efficacy of an adjunctive tDCS and CT intervention on modulating network connectivity in older adults.
Participants and Methods:
This sample included 209 older adults (mean age = 71.6) from the Augmenting Cognitive Training in Older Adults multisite trial. Participants completed 40 hours of CT over 12 weeks, which included 8 attention, processing speed, and working memory tasks. Participants were randomized into active or sham stimulation groups, and tDCS was administered during CT daily for two weeks then weekly for 10 weeks. For both stimulation groups, two electrodes in saline-soaked 5x7 cm2 sponges were placed at F3 (cathode) and F4 (anode) using the 10-20 measurement system. The active group received 2mA of current for 20 minutes. The sham group received 2mA for 30 seconds, then no current for the remaining 20 minutes.
Participants underwent resting-state fMRI at baseline and post-intervention. CONN toolbox was used to preprocess imaging data and conduct region of interest (ROI-ROI) connectivity analyses. The Artifact Detection Toolbox, using intermediate settings, identified outlier volumes. Two participants were excluded for having greater than 50% of volumes flagged as outliers. ROI-ROI analyses modeled the interaction between tDCS group (active versus sham) and occasion (baseline connectivity versus postintervention connectivity) for the DMN, FPCN, and CON controlling for age, sex, education, site, and adherence.
Results:
Compared to sham, the active group demonstrated ROI-ROI increases in functional connectivity within the DMN following intervention (left temporal to right temporal [T(202) = 2.78, pFDR < 0.05] and left temporal to right dorsal medial prefrontal cortex [T(202) = 2.74, pFDR < 0.05]. In contrast, compared to sham, the active group demonstrated ROI-ROI decreases in functional connectivity within the FPCN following intervention (left dorsal prefrontal cortex to left temporal [T(202) = -2.96, pFDR < 0.05] and left dorsal prefrontal cortex to left lateral prefrontal cortex [T(202) = -2.77, pFDR < 0.05]). There were no significant interactions detected for CON regions.
Conclusions:
These findings (a) demonstrate the feasibility of modulating network connectivity using tDCS and CT and (b) provide important information regarding the pattern of connectivity changes occurring at these intervention parameters in older adults. Importantly, the active stimulation group showed increases in connectivity within the DMN (a network particularly vulnerable to aging and implicated in Alzheimer’s disease) but decreases in connectivity between left frontal and temporal FPCN regions. Future analyses from this trial will evaluate the association between these changes in connectivity and cognitive performance post-intervention and at a one-year timepoint.
Nonpathological aging has been linked to decline in both verbal and visuospatial memory abilities in older adults. Disruptions in resting-state functional connectivity within well-characterized, higherorder cognitive brain networks have also been coupled with poorer memory functioning in healthy older adults and in older adults with dementia. However, there is a paucity of research on the association between higherorder functional connectivity and verbal and visuospatial memory performance in the older adult population. The current study examines the association between resting-state functional connectivity within the cingulo-opercular network (CON), frontoparietal control network (FPCN), and default mode network (DMN) and verbal and visuospatial learning and memory in a large sample of healthy older adults. We hypothesized that greater within-network CON and FPCN functional connectivity would be associated with better immediate verbal and visuospatial memory recall. Additionally, we predicted that within-network DMN functional connectivity would be associated with improvements in delayed verbal and visuospatial memory recall. This study helps to glean insight into whether within-network CON, FPCN, or DMN functional connectivity is associated with verbal and visuospatial memory abilities in later life.
Participants and Methods:
330 healthy older adults between 65 and 89 years old (mean age = 71.6 ± 5.2) were recruited at the University of Florida (n = 222) and the University of Arizona (n = 108). Participants underwent resting-state fMRI and completed verbal memory (Hopkins Verbal Learning Test - Revised [HVLT-R]) and visuospatial memory (Brief Visuospatial Memory Test - Revised [BVMT-R]) measures. Immediate (total) and delayed recall scores on the HVLT-R and BVMT-R were calculated using each test manual’s scoring criteria. Learning ratios on the HVLT-R and BVMT-R were quantified by dividing the number of stimuli (verbal or visuospatial) learned between the first and third trials by the number of stimuli not recalled after the first learning trial. CONN Toolbox was used to extract average within-network connectivity values for CON, FPCN, and DMN. Hierarchical regressions were conducted, controlling for sex, race, ethnicity, years of education, number of invalid scans, and scanner site.
Results:
Greater CON connectivity was significantly associated with better HVLT-R immediate (total) recall (ß = 0.16, p = 0.01), HVLT-R learning ratio (ß = 0.16, p = 0.01), BVMT-R immediate (total) recall (ß = 0.14, p = 0.02), and BVMT-R delayed recall performance (ß = 0.15, p = 0.01). Greater FPCN connectivity was associated with better BVMT-R learning ratio (ß = 0.13, p = 0.04). HVLT-R delayed recall performance was not associated with connectivity in any network, and DMN connectivity was not significantly related to any measure.
Conclusions:
Connectivity within CON demonstrated a robust relationship with different components of memory function as well across verbal and visuospatial domains. In contrast, FPCN only evidenced a relationship with visuospatial learning, and DMN was not significantly associated with memory measures. These data suggest that CON may be a valuable target in longitudinal studies of age-related memory changes, but also a possible target in future non-invasive interventions to attenuate memory decline in older adults.
Research among non-industrial societies suggests that body kinematics adopted during running vary between groups according to the cultural importance of running. Among groups in which running is common and an important part of cultural identity, runners tend to adopt what exercise scientists and coaches consider to be good technique for avoiding injury and maximising performance. In contrast, among groups in which running is not particularly culturally important, people tend to adopt suboptimal technique. This paper begins by describing key elements of good running technique, including landing with a forefoot or midfoot strike pattern and leg oriented roughly vertically. Next, we review evidence from non-industrial societies that cultural attitudes about running associate with variation in running techniques. Then, we present new data from Tsimane forager–horticulturalists in Bolivia. Our findings suggest that running is neither a common activity among the Tsimane nor is it considered an important part of cultural identity. We also demonstrate that when Tsimane do run, they tend to use suboptimal technique, specifically landing with a rearfoot strike pattern and leg protracted ahead of the knee (called overstriding). Finally, we discuss processes by which culture might influence variation in running techniques among non-industrial societies, including self-optimisation and social learning.
Cygnus A, the nearest truly powerful radio galaxy, resides at the centre of a massive galaxy cluster. Chandra X-ray observations reveal its cocoon shocks, radio lobe cavities and an X-ray jet, which are discussed here. It is argued that X-ray emission from the outer regions of the cocoon shocks is nonthermal. The X-ray jets are best interpreted as synchrotron emission, suggesting that they, rather than the radio jets, are the path of energy flow from the nucleus to the hotspots. In that case, a model shows that the jet flow is non-relativistic and carries in excess of one solar mass per year.
Environmental policy and politics in the United States have changed dramatically over the past three decades. What began in the late 1960s as an heroic effort by an incipient environmental movement to conserve dwindling natural resources and prevent further deterioration of the air, water, and land has been transformed over more than three decades into an extraordinarily complex, diverse, and often controversial array of environmental policies. Those policies occupy a continuing position of high visibility on the political agenda at all levels of government, and environmental values are widely embraced by the American public. Yet throughout the 1990s environmental policies and programs were characterized as much by sharp political conflict as by the consensus over policy goals and means that reigned during the early to mid-1970s. As the twenty-first century approaches, there is considerable value in looking back at this exceptional period to under-stand the nature of the transformation and its implications for the future.
Over the past decade the study of environmental justice has sparked considerable debate, with conflict often exacerbated by conceptual and definitional muddles, scarcity of pertinent data, and disagreement over which methods to employ. This book by the late James Lester and his colleagues is unlikely to diminish the controversy. Yet, as a comprehensive attempt to clear out the conceptual underbrush and bring hard data to bear on difficult empirical questions, the book merits attention by all those concerned with issues of environmental equity. The preliminary findings have been presented at conferences from 1994 on, and many are already familiar with this research. As the authors note, however, they began with a skeptical posture toward the strident assertions made regarding environmental justice. In the end, they reconsidered that position and found much evidence to support concern over environmental inequities in U.S. society.