To understand the behavior of a complex system, one must understand the interactions among its parts. Doing so is difficult for nondecomposable systems, in which the interactions strongly influence the short term behavior of the parts. Science's principal tool for dealing with nondecomposable systems is a variety of probabilistic analysis that I call EPA. I show that EPA's power derives from an assumption that appears to be false of nondecomposable complex systems, in virtue of their very nondecomposability. Yet EPA is extremely successful. I aim to find an interpretation of EPA's assumption that is consistent with, indeed that explains, its success.