We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sex-related differences in psychopathology are known phenomena, with externalizing and internalizing symptoms typically more common in boys and girls, respectively. However, the neural correlates of these sex-by-psychopathology interactions are underinvestigated, particularly in adolescence.
Methods
Participants were 14 years of age and part of the IMAGEN study, a large (N = 1526) community-based sample. To test for sex-by-psychopathology interactions in structural grey matter volume (GMV), we used whole-brain, voxel-wise neuroimaging analyses based on robust non-parametric methods. Psychopathological symptom data were derived from the Strengths and Difficulties Questionnaire (SDQ).
Results
We found a sex-by-hyperactivity/inattention interaction in four brain clusters: right temporoparietal-opercular region (p < 0.01, Cohen's d = −0.24), bilateral anterior and mid-cingulum (p < 0.05, Cohen's d = −0.18), right cerebellum and fusiform (p < 0.05, Cohen's d = −0.20) and left frontal superior and middle gyri (p < 0.05, Cohen's d = −0.26). Higher symptoms of hyperactivity/inattention were associated with lower GMV in all four brain clusters in boys, and with higher GMV in the temporoparietal-opercular and cerebellar-fusiform clusters in girls.
Conclusions
Using a large, sex-balanced and community-based sample, our study lends support to the idea that externalizing symptoms of hyperactivity/inattention may be associated with different neural structures in male and female adolescents. The brain regions we report have been associated with a myriad of important cognitive functions, in particular, attention, cognitive and motor control, and timing, that are potentially relevant to understand the behavioural manifestations of hyperactive and inattentive symptoms. This study highlights the importance of considering sex in our efforts to uncover mechanisms underlying psychopathology during adolescence.
Many studies document cognitive decline following specific types of acute illness hospitalizations (AIH) such as surgery, critical care, or those complicated by delirium. However, cognitive decline may be a complication following all types of AIH. This systematic review will summarize longitudinal observational studies documenting cognitive changes following AIH in the majority admitted population and conduct meta-analysis (MA) to assess the quantitative effect of AIH on post-hospitalization cognitive decline (PHCD).
Methods:
We followed Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Selection criteria were defined to identify studies of older age adults exposed to AIH with cognitive measures. 6566 titles were screened. 46 reports were reviewed qualitatively, of which seven contributed data to the MA. Risk of bias was assessed using the Newcastle–Ottawa Scale.
Results:
The qualitative review suggested increased cognitive decline following AIH, but several reports were particularly vulnerable to bias. Domain-specific outcomes following AIH included declines in memory and processing speed. Increasing age and the severity of illness were the most consistent risk factors for PHCD. PHCD was supported by MA of seven eligible studies with 41,453 participants (Cohen’s d = −0.25, 95% CI [−0.02, −0.49] I2 35%).
Conclusions:
There is preliminary evidence that AIH exposure accelerates or triggers cognitive decline in the elderly patient. PHCD reported in specific contexts could be subsets of a larger phenomenon and caused by overlapping mechanisms. Future research must clarify the trajectory, clinical significance, and etiology of PHCD: a priority in the face of an aging population with increasing rates of both cognitive impairment and hospitalization.
Paraneoplastic syndromes (PNS) are immune-mediated neurologic diseases that occur as an indirect effect of malignancy, and can be challenging to diagnose. Onconeural antibodies have a greater than 95% association with cancer, and their presence in a patient with neurologic symptoms is reportedly highly indicative of PNS. However, we performed a single-centre retrospective review to determine the positive predictive value of onconeural antibody testing, and found it to be concerningly low (39%). Recognising the limitations of onconeural antibody testing is critical to ensure accurate test interpretation, avoid unnecessary repeated malignancy screening and prevent the use of potentially hazardous immunotherapy.
Terrestrial meteorite ages indicate that some ice at the Allan Hills blue ice area (AH BIA) may be as old as 2.2 Ma. As such, ice from the AH BIA could potentially be used to extend the ice core record of paleoclimate beyond 800 ka. We collected samples from 5 to 10 cm depth along a 5 km transect through the main icefield and drilled a 225 m ice core (S27) at the midpoint of the transect to develop the climate archive of the AH BIA. Stable water isotope measurements (δD) of the surface chips and of ice core S27 yield comparable signals, indicating that the climate record has not been significantly altered in the surface ice. Measurements of 40Aratm and δ18Oatm taken from ice core S27 and eight additional shallow ice cores constrain the age of the ice to approximately 90–250 ka. Our findings provide a framework around which future investigations of potentially older ice in the AH BIA could be based.
Diagnostic confusion between thyroid disease and myasthenia gravis (MG) can arise because the two may have similar clinical features, and also because of the more frequent coexistence of these autoimmune disorders in the same individual. In MG, autoantibodies directed against the acetylcholine receptor result in muscle weakness. Thymic pathology is well recognized in MG, with thymic hyperplasia frequent in early onset MG and thymoma more common in later onset MG. In Graves’ disease, autoantibodies against thyroid antigens result in hyperthyroidism. A seldom-recognized feature of Grave’s disease is the occurrence of an enlarged thymus (thymic hyperplasia) on chest CT, or of thymic lymphoid hyperplasia pathologically.
Case study:
This report describes a case in which the discovery of a mediastinal mass during imaging of the thyroid, and the presence of myasthenic-like symptoms, in a patient with Graves’ disease prompted investigations into whether the patient also had MG.
Results:
Despite symptoms which strongly suggested MG, subsequent investigations did not confirm the diagnosis, and treatment of Grave’s lead to a resolution of the symptoms and regression of the thymic enlargement seen on CT.
Conclusion:
The case study highlighted clinical similarities between Grave’s disease and myasthenia gravis which might cause diagnostic confusion, and also the investigations which are useful in order to differentiate the two diseases. In addition to common clinical features, the autoimmune diseases Grave’s disease and myasthenia gravis may both produce radiological thymic enlargement.